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Abstract

Which components of a large software system are the
most defect-prone? In a study on a large SAP Java system,
we evaluated and compared a number of defect predictors,
based on code features such as complexity metrics, static
error detectors, change frequency, or component imports,
thus replicating a number of earlier case studies in an in-
dustrial context. We found the overall predictive power to
be lower than expected; still, the resulting regression mod-
els successfully predicted 50–60% of the 20% most defect-
prone components.

1. Introduction

To get the most out of quality assurance, it is important
to allocate quality assurance resources wisely—i.e., to de-
cide how much test and reviewing effort goes into the in-
dividual components of a large software system. This task
is challenging, because neither defects nor their potential
damage is distributed equally across the system. One there-
fore needs to focus on where to put the most effort—for
instance, the components with the highest complexity, the
components most critical for essential functionality, or the
components most frequently or most recently changed.

To support such allocation decisions at SAP, we wanted
to leverage actual facts from the project history—in partic-
ular, the defect history of a project, telling which defect had
been fixed when and by whom in which component. For
instance, if we knew which components have shown to be
especially defect-prone in the past, we could justify spend-
ing extra effort on these in the future. If we additionally
could determine which features of these components corre-
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late with proneness to defects, we could check new compo-
nents for such features—and predict their defect likelihood.

In the past, such historic facts had been exploited a num-
ber of times. Weyuker and Ostrand [23] had shown that
80% of the defects in a large AT&T system are located in
just 20% of the files. In a study at Microsoft, Nagappan et
al. [21] used complexity metrics to successfully predict the
most defect-prone components. Schröter et al. [26] showed
that imports could be used as defect predictors.

All these works rely on the same principal scheme, sum-
marized in Figure 1: By mining defect and change histories,
one determines the number of past defects fixed in a com-
ponent. The resulting defect counts can then be related to
other component features (such as complexity metrics, de-
pendencies, change frequency. . . ) to learn which features
typically correlate with defect counts. This allows to build
predictor models which predict the defect count for a new
component based on these features.

We were curious to learn whether such approaches
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Figure 1. Predicting Defects in a Nutshell. We map
previous defects to components and relate the re-
sulting quality to component features. These fea-
tures can then be used to predict future quality.



would be applicable to SAP’s code base as well. We there-
fore decided to replicate these earlier case studies on one of
SAP’s larger systems. In this experience report, we make
the following contributions:

• We replicated and compared the studies of Nagappan
et al. [21] and Schröter et al. [26] on a much larger Java
system in a different industrial context;

• We extended the study to additionally consider depen-
dency and code smell metrics;

• We experienced that mining software archives pro-
vided very valuable data;

• We learned that predictors obtained from one project
are hard to generalize to other projects, or a system of
several projects;

• We expect that more features, in particular process fea-
tures, may be required to differentiate between projects
and further improve prediction.

This paper starts with the context at SAP (Section 2), fol-
lowed by the related work (Section 3). We then discuss how
we obtained defect data (Section 4) and metrics (Section 5),
followed by the predictor models we used (Section 6). The
results we obtained are discussed in Section 7, closing with
the lessons we learned on the benefits and limitations of
mining and predicting defects (Section 8). Section 9 pro-
vides a conclusion and an outlook to future work.

2. Context and Goal

Since 1997, SAP uses the Java programming language
for producing software systems. Java is primarily used for
interfaces or engines on top of base systems such as SAP
ERP, which are mostly written in the ABAP programming
language. Overall, at SAP, several million lines of Java are
used in production code.

In this paper, we describe our experience on a very
large Java system consisting of several hundred individual
projects. Projects with coherent tasks are grouped into so-
called tracks.

In each of these projects, the production process is com-
posed of a development and a maintenance phase. During
development, the product is built and enhanced as well as
tested locally. At the end of development, a maintenance
branch is created from the main development trunk; in this
branch, only corrections are applied, but no new features are
added. From this branch, individual versions (called service
packs) are assembled, tested, packaged, and deployed to the
customer. Tracking the individual changes, versions, and
branches is being handled by standard software configura-
tion management (SCM) systems such as Perforce.
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Figure 2. Collecting metrics and defect counts per
component

As post-release fixes are applied only in the maintenance
branch, it is easy to relate these fixes to individual service
packs. Thus, for each service pack, we can exactly tell
which fixes were applied, and where they were applied. By
counting the fixes per artifact, we wanted to have a defect
distribution, showing us in which artifacts the most defects
occurred—or, more precisely, the most defects were fixed.

At the same time, we wanted to extract appropriate fea-
tures from software components—in particular, complexity
metrics—and relate these to defect counts, as sketched in
Figure 2. Our overall goal was to build statistical predic-
tor models that would allow predicting the defect counts for
new components, based on their features—and thus assist
in deciding where to allocate quality assurance resources.

3. Background

We started this project by studying the related work.

Defects. More than 20 years ago, Basili et al. [5] explored
data on defect distribution, module size and complex-
ity, as well as fixing effort in a medium-sized software
project. One of their key results was that defect density
decreased with increasing module size—a result that



contrasted with common assumptions about modular
programming. To collect the data, developers filled
out forms whenever they changed a file. Similar to the
work of Koru et al. [16] that undermines their results,
we aimed for collecting such data automatically.

Fenton and Ohlsson [8] could not replicate the results
of Basili et al. [5] and pointed out that defects found
during testing and in production are not related. Con-
sequently, we exclusively focused on defects fixed dur-
ing production.

Software Archives. Recently, researchers have learned to
leverage the enormous amount of process data as con-
tained in software archives [25, 27, 29, 31, 32]. By
mapping defects to components, one can compute
the defect density [10] and identify defect-inducing
changes [27]. This fine-grained mapping forms the
base for our prediction.

Metrics. Software quality management makes use of met-
rics to measure the quality of a product as well as
the effort for its development and maintenance. The
product metrics compiled by Fenton and Pleeger [9]
measure the size, complexity, and the programming
style of a software; the best known are the number of
non-comment non-blank code lines (LOC), McCabe’s
complexity measure [18] as well as the Halstead met-
rics [13].

As these early metrics were unsuited for object-
oriented design, researchers have explored better al-
ternatives. Chidamber und Kemerer’s OO metrics [6]
were successfully used by Basili [4] to predict defect
densities. The cohesion metrics by Henderson-Sellers
[14] refine Chidamber and Kemerer’s cohesion metric;
see [12] for a discussion. In [17], Robert C. Martin pre-
sented dependency metrics to measure the quality of an
object-oriented design in terms of it being reusable and
conforming to OO design principles.

Defect prediction. Researchers have long recognized the
potential value of defect prediction. Ostrand et al. [24]
used historic data from version archives to predict de-
fects in two large software systems. Their predictor
model considered whether a file had been changed
in the previous release; the size and age of the file;
whether it was present in the previous release; and its
number of defects in this release. For each release,
they could successfully predict 71%–92% of the 20%
most defect-prone files. Graves et al. [11] added soft-
ware metrics as additional features and found that the
number of changes of a file was a stronger predictor
than its size.

While the set of code metrics to be used appeared to be
quite stable over the past few years, the variety of tech-

niques used to train and to improve defect accuracy is
wide. Lately, Kamei et al. [15] presented interesting
over and under sampling techniques to prevent heavily
unbalanced training sets. Menzies et al. [19] showed
that similar techniques can also be used to reduce the
size of training sets without loosing predictive accu-
racy.

Most related to our current approach is the work of Na-
gappan et al. [21], who used complexity metrics to suc-
cessfully predict the most defect-prone components.
Another important related work is the work of Schröter
et al. [26], who showed that imports could be used as
defect predictors. Imports were also used by Neuhaus
et al. [22] to predict a subset of defects, namely se-
curity vulnerabilities. Dependencies between compo-
nents, as well as change data, were also used by Na-
gappan and Ball [20] to predict post-release defects.

In [7], Fenton and Neil criticize potential issues of ear-
lier software defect prediction models. In particular,
they point out that earlier studies using linear regres-
sion models did not adequately consider the problem
of multi-collinearity. This can be addressed by princi-
pal component analysis, as applied in [21] as well as
in the present work.

4. Collecting Defect Data

As laid out in Section 2, post-release fixes are applied
only in the maintenance branch. Thus, they can easily be
retrieved directly from the SCM system. For each service
pack, we could thus exactly tell which fixes were applied,
and where they were applied. For each artifact, we could
thus count how many times it was fixed—or, in hindsight,
how many defects it still contained as it was released in the
last service pack.

In related work on extracting defect densities in open
source software, establishing defect counts is listed as chal-
lenging: First, one has to establish a mapping between de-
fect database and version archive [10]; second, one must
distinguish between fixes and non-corrective changes [28].
Due to the particular organization of all fixes in one single
branch, we experienced no such issues.

As shown in Figure 3, each Java project at SAP can be
decomposed into several packages, which in turn is com-
posed of classes. In addition to aggregate defect counts per
Java class, we also aggregated defect counts per package
and per project. (As a single fix may encompass multiple
classes, the sum of defect counts across all parts is differ-
ent from the defect count for a whole.) We thus could tell
precisely where the defects were, and how they were dis-
tributed.
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Figure 3. Levels of granularity

5. Collecting Metrics

As stated initially, we wanted to build a predictor by re-
lating defect counts to other program features, such as com-
plexity metrics. To extract metrics, we used external tools,
working on Java source as well as on Java binaries. Extract-
ing metrics was surprisingly difficult, since we had to keep
track of sources and binaries, as well as their interrelations;
also, not every source in the version archive and not every
binary produced actually ends up in a service pack.

Overall, we collected 78 metrics from our Java system:

Complexity metrics. There is a common assumption that
the more complex a component is, the more defect
prone it is. To quantify complexity, we used a set of
40 source code complexity metrics such as total lines
of code, McCabe complexity, number of attributes or
number of methods. These metrics also included Hal-
stead metrics such as vocabulary, difficulty, or number
of distinct operands.

Additionally, we also used the eight Chidamber and
Kemerer byte code metrics [6] such as weighted meth-
ods per class, depth of inheritance tree, or number of
children.

Dependency metrics. Another common assumption is that
the number and kind of dependencies affects the
defect-proneness of a component. We used the JDe-
pend tool to measure Martin’s eight dependency met-
rics [17] such as efferent couplings or abstractness (the
ratio between abstract and concrete classes).

Code smell metrics. If a piece of code exhibits code
smells and questionable coding style, chances are that
it contains actual defects. We used the PMD [2] and
FindBugs [1] tools to search for error patterns. We
counted the number of PMD warnings for each of
the 15 PMD rule categories such as UnusedCodeRules
or SecurityCodeGuidelines, as well as the number of
FindBugs warnings for six FindBugs categories such
as Performance or Correctness.

Change metrics. The more frequently a component is
changed, the more likely it is to contain a defect in-
troduced during one of these changes. From the SCM
system, we extracted for each artifact the total number
of changes it had gone through.

All these metrics were determined both at the class and
package level; for each entity, we computed the sum, the
average, and the maximum of each metric (where applica-
ble).

6. Predictor Models

The purpose of the statistical analysis in this paper is to
predict defects for software components, but also to reveal
defect distributions to better understand failure-prone com-
ponents. In this section, we explain the different prediction
models that we used for our experiments. The analysis was
conduced with the freely available tool GNU R.1

Prediction models are trained with data for which the
defect-proneness is known. For the studies in this paper,
we used two different training sets (see also Figure 4).

1. To assess long-term predictions, we took the eight
months after the release of version V1 as training data.
We tested our predictions on the eight months after ver-
sion V2 (denoted as V1ÕV2 throughout the paper).

2. For short-term predictions, we took the two months af-
ter the release of version V2 as training data to predict
defects in version V3 (denoted as V2ÕV3).

Our evaluation setting has the advantage that it closely
reflects the potential usage of prediction models at SAP: a
model is learned from one version of a software, and then
applied to predict the defects of a later version of the same
software. In contrast, techniques such as data splitting or n-
fold cross-validation operate on a single dataset and neglect
the temporal aspect.

V1

V3

V2

V2

8 months 8 months

2 m. 2 m.

Variant 1

Variant 2

Figure 4. Long-term and short-term prediction.

6.1. Linear Regression

Linear regression is a standard technique for prediction
models [30] and can reveal relationships between one de-
pendent variables (here: number of defects, see Section 4)

1http://www.r-project.org

http://www.r-project.org


and one or more independent variables (metrics, see Sec-
tion 5). A crucial prerequisite is that independent variables
are not inter-correlated with each other. Partly because we
used different tools to collect metrics, some metrics showed
high correlations in our data set, for example number of type
declarations and the total number of classes within a pack-
age. When neglected, such inter-correlations can increase
the variability of the dependent variable and thus decrease
the quality of predictions. This phenomenon is called multi-
collinearity.

To remove multi-collinearity, we used principal com-
ponent analysis (PCA). PCA reduces complex datasets by
projecting the data points into a subspace with lower di-
mensionality, while keeping most of the information. The
resulting principal components are independent of each
other, which satisfies the requirements of linear regression.
Specifically for our prediction models, we use the number
of defects as the dependent variable and the principal com-
ponents resulting from PCA as independent variables.

The quality of a linear regression model is expressed us-
ing the coefficient of determination (R2). It expresses the
proportion of variance in a data set that is accounted for by
a statistical model. The R2 coefficient can take values be-
tween 0 and 1, where a higher value implies a higher predic-
tive power. The adjusted coefficient of determination (R2)
expresses the robustness of the model with respect to the
number of used regressors.

6.2. Support Vector Machines

A support vector machine (SVM; see [30], for example)
is a classification method used for pattern recognition, such
as recognition of spam e-mail. The data points of the ob-
jects to be classified are represented in a vector space. In
this space, the SVM fits a multi-dimensional separating hy-
perplane maximizing the margin between the data sets. The
SVM thus clusters objects into groups and can decide which
group new objects are in. SVMs can be used for classifica-
tion as well as for regression.

6.3. Regression vs. Classification

We present the prediction results in two ways: regression
and classification.

6.3.1. Regression

A regression analysis predicts actual defect counts for indi-
vidual components. Such an analysis can be conducted with
linear regression as well as with SVMs.

To express the predictive power of a regression, Spear-
man’s rank correlation coefficient is widespread and use-
ful. A high positive Spearman correlation indicates a pre-
cise prediction regarding both ranking as well as the actual
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Figure 5. Precision and Recall of a Classification

defect counts. A Spearman correlation of −1 means that
the ranking was predicted in reverse order. For our pur-
poses, we were most interested in the Spearman correlation
for the 5%, 10%, and 20% most defect-prone components,
as these would be focused upon in quality assurance alloca-
tion based on the prediction.

6.3.2. Classification

As an alternative to regression, one can build predictors that
classify components whether they are defect-prone or not.
For classification, we exclusively used SVMs; as with re-
gression analysis, we used the most 5%, 10%, and 20%
most defect-prone components for classification.

To measure the quality of a classification, we use preci-
sion and recall, as shown in Figure 5:

Precision expresses whether the components classified as
defect-prone are correctly classified. A value close to 1
means that almost all reported components are indeed
defect-prone; all positives are true positives.

Precision =
true positives

true positives+ false positives

Recall expresses the percentage of defect-prone compo-
nents that are classified as such. Again, a value close
to 1 is the best, and means that almost all defect-prone
components are classified as such; all negatives are
true negatives.

Recall =
true positives

true positives+ false negatives



7. Results

In this section, we present the results of our experiments.
We first explain the distribution of defects in the studied
software system. We then discuss the correlations between
metrics and the number of defects; finally, we show the per-
formance of different defect prediction models.

7.1. Defect Distribution

For both package and class level, we observed a Pareto
effect. For the eight months after the release V1, we found
that 20% of all packages contain more than 70% of all de-
fects. For the eight months after release V2, we found that
20% of packages contain 80% of defects. A similar effect
has been observed in other industrial studies. For example,
Fenton and Ohlsson report 60% of all defects in the 20%
most-defect prone modules [8] and Andersson and Rune-
son found between 63% and 70% of all defects in the 20%
most defect-prone modules [3].

The presence of a Pareto effect indicates that it is worth-
while to prioritize resources for quality assurance (QA), as
long as one knows the most defect-prone parts of a software
system.2 Managers often rely on their experience to iden-
tify these parts. Having access to prediction models helps
them to cross-check their judgments, explain the decisions,
and to partly automate the process of QA prioritization.

The Pareto effect additionally provides an upper bound
for the maximal possible recall of prediction models. On
the SAP data, any prediction of the 20% most defect-prone
components, will catch at most 70% (for V1) or 80% of the
defects (for V2).

7.2. Correlation

Before building prediction models, we checked whether
there is a relation between the number of defects and the
metrics computed in Section 5. In this section, we report the
Spearman correlations between defects and metrics. Corre-
lation values close to 1 indicate that two variables are al-
most perfectly related; values close to -1 indicate a strong
relation, but in opposite direction; finally, values close to 0
indicate that the two variables are independent.

We first correlated the number of defects in components
across different versions of the system. This answers the
questions “Are the most defect-prone components in V1 the
same as in V2?” For this analysis, we considered only com-
ponents that existed in both releases. In Table 1, we show
the results on package and class level.

2In contrast, if defects would be distributed equally, there would be no
clear benefit in prioritizing QA resources.

V1ÕV2 V2ÕV3

Packages Classes Packages Classes

Overall 0.451 0.309 0.471 0.412

Project P1 0.464 0.332 0.328 0.181
Project P2 0.641 0.450 0.491 0.277
Project P3 0.361 0.350 0.519 0.382
Project P4 0.664 0.440 0.413 0.222
Project P5 0.529 0.191 0.366 0.407
Project P6 0.679 0.374 0.388 0.225

Table 1. Spearman correlation between number of
defects for subsequent versions.

In most cases, the correlations are stronger on package
level than on class level; as a consequence one can ex-
pect better prediction results for packages than for classes.
Furthermore, there is a difference between the correlations
for V1ÕV2 and for V2ÕV3, which might be because of
the different time intervals (eight months vs two months).
Most importantly, the correlations are only weak to medium
(0.3–0.6), which indicates that the components that are most
defect-prone changes are not exactly the same in two differ-
ent versions.

A prerequisite for making reliable predictions is that the
independent variables (here: metrics) are correlated with the
dependent variable (here: number of defects). In Table 2, we
show the correlations between a selection of metrics and the
number of defects—for the entire software system (“Over-
all”), Track T1, and Project P3 on package level and for
Project P4 on class level. Out of the 78 collected metrics,
we include only the most promising metrics (with the high-
est correlations) in Table 2.

In almost all cases, the metrics correlated positively with
the number of defects, i.e., the higher the value of a metrics,
the more defects a component is likely to have. However,
for the packages of the entire system only the number of
changes (N p4changes) had a correlation of above 0.400.
If we focus our analysis on single tracks or packages (for
example Track T1 or Project P3), the correlations increase
for several metrics to values above 0.500. On class level the
correlations are generally lower; for example, for Project
P4 all correlations are below 0.400, except for the number
of changes and number of violated ControversialRules.

7.3 Regression Analysis

In this section, we present the results from defect predic-
tion with linear regression models and principal component
analysis. Table 3 shows general information about the mod-
els which we built with Variant 1 (V1ÕV2, eight months
of defect data) and Variant 2 (V2ÕV3, 2 months of defect



Metric Level: Package Class

Overall T1 P3 P4

Complexity Metrics
TLOC sum 0.281 0.565 0.583 0.377
Total Lines Of Code max 0.274 0.518 0.587 –
MPC sum 0.272 0.561 0.592 0.304
Method Lines of Code max 0.268 0.529 0.582 0.273
UWCS sum 0.264 0.504 0.526 0.396
Unweighted Class Size max 0.257 0.462 0.561 –
VG sum 0.262 0.554 0.583 0.299
McCabe Complexity max 0.264 0.512 0.588 0.261
NBD sum 0.256 0.545 0.564 0.297
Nested Block Depth max 0.255 0.497 0.585 0.265
N casts sum 0.253 0.535 0.586 0.317
Number of Casts max 0.240 0.474 0.582 0.295
N comments sum 0.312 0.521 0.557 0.363
Number of Comments max 0.310 0.485 0.582 –

Dependency Metrics
Ce 0.316 0.542 0.608 –
Efferent Couplings

Chidamber and Kemerer Metrics
CBO sum 0.307 0.572 0.586 0.299
Coupling Between Objs max 0.313 0.554 0.593 –
RFC sum 0.269 0.550 0.581 0.368
Response for Class max 0.278 0.509 0.595 –
WMC sum 0.246 0.485 0.514 0.377
Weigted Mthds per Cls max 0.245 0.443 0.523 –
LCOM sum 0.233 0.460 0.500 0.268
Lack of Cohesion max 0.229 0.437 0.491 –

Change Metrics
N p4changes sum 0.393 0.503 0.308 0.403
Number of Changes max 0.402 0.379 0.240 –

Code Smell Metrics
DesignRules sum 0.262 0.527 0.557 0.264

max 0.254 0.479 0.578 –
Optimization- sum 0.271 0.563 0.546 0.315
Rules max 0.270 0.526 0.535 –
Controversial- sum 0.266 0.532 0.570 0.401
Rules max 0.261 0.503 0.568 –
NamingRules sum 0.264 0.493 0.531 0.381

max 0.259 0.454 0.521 –
CodeSize- sum 0.282 0.523 0.573 0.370
Rules max 0.281 0.496 0.572 –

Table 2. Spearman correlations between metrics
and number of defects for the entire Java system,
track T1, and projects P3 and P4.

data) for the packages of the entire software system, Track
T1 and Project P2. The quality of each model is reflected by
the R2-value; as a rule of thumb, trustworthy models should
have values above 0.500, which means that they can explain
the majority of the training data. For the entire software sys-
tem, both variants fail to meet this criteria, only if one learns
a model for a single track or project, the R2-values reach an
acceptable level.

Model R2 adj. R2 p-value

Overall V1ÕV2 0.341 0.336 2.2e−16

V2ÕV3 0.244 0.238 2.2e−16

Track T1 V1ÕV2 0.681 0.637 2.2e−16

V2ÕV3 0.436 0.365 2.2e−16

Project P2 V1ÕV2 0.668 0.583 2.2e−16

V2ÕV3 0.523 0.420 6.9e−16

Table 3. Prediction models with linear regression
on package level. The selected principal compo-
nents explain 99% of the cumulated variance.

Note that the R2-values only describe how well a model
fits its training data. In particular, they do not make any
statements about the testing data and high R2-values do not
automatically result in good predictions. To measure how
well a model performs on the testing data, we use Spearman
correlation and hit rates. The Spearman correlations for all
packages and the top 5%, 10%, and 20% of most-defect
prone packages are listed in Table 4. In addition, we report
the hit rate for the 5%, 10%, and 20% of most-defect prone
packages. The hit rate describes how many of the observed
top n% of most defect-prone packages are actually in the
predicted top n%.

For the entire software system, the Spearman correlation
values range between 0.3 and 0.5, the hit rate is between
45% and 55%. When focussing on tracks and projects, the
results improve: correlation values rise up to 0.7 and the hit
rate increases above 60%.

7.4 Prediction on Class Level

We repeated our experiments on class level for Project
P4 using Variant 1 (V1ÕV2). To build regression models
we used linear regression with principal component anal-
ysis and a support vector machine. We also used support
vector machines to build a classification model. The linear
regression model had an acceptable R2- value above 0.5.
Table 5 shows the results of this experiment.

For the regression, the results for linear regression and
support vector machines were similar. They had Spearman
correlations between 0.4 and 0.5 and hit rates around 0.5.



V1ÕV2 V2ÕV3

Spearman Hit Rate Spearman Hit Rate

Overall
total 0.464 – 0.376 –
5% 0.409 45.8% 0.323 47.7%

10% 0.425 51.8% 0.442 48.3%
20% 0.507 54.7% 0.586 46.7%

Track T1
total 0.596 – 0.554 –
5% 0.430 47.6% 0.648 45.4%

10% 0.679 39.5% 0.543 62.7%
20% 0.283 62.7% 0.487 62.7%

Project P2
total 0.603 – 0.425 –
5% 0.735 41.6% 0.341 30.7%

10% 0.456 60.0% 0.156 42.3%
20% 0.420 64.0% 0.171 52.9%

Table 4. Prediction results of linear regression on
package level for the entire system.

(a) Regression

Spearman Hit Rate

LinReg top 5% 0.508 53.6%
10% 0.480 49.3%
20% 0.455 44.8%

SVM top 5% 0.515 46.3%
10% 0.428 46.9%
20% 0.431 46.0%

(b) Classification (SVM)

Precision Recall

top 5% 0.489 0.575
10% 0.432 0.532
20% 0.542 0.493

Table 5. Results for Project P4 on class level.

For classification with support vector machines, both preci-
sion and recall were roughly 0.50. This means that every
second file predicted as defect-prone had actually defects,
and every second file with defects was correctly predicted
as defect-prone.

7.5. Prediction for New Components

We also tested whether the models can predict defects for
new components. For this experiment, we trained a model
from version V1 of Track T2 and tested the model on the
new packages in version V2.3 Table 6 shows the results for

3We identified new components based on their names, i.e., the packages
that exist in version V2 but not in V1. We did not account for refactorings.

(a) Regression

Spearman Hit Rate

LinReg top 5% 0.057 33.3%
10% -0.143 50.0%
20% 0.200 52.1%

SVM top 5% -0.086 33.3%
10% -0.108 50.0%
20% 0.112 47.8%

(b) Classification

Precision Recall

top 5% 0.222 0.400
10% 0.352 0.666
20% 0.289 0.785

Table 6. Results for new packages in Track T2.

regression and classification, again with linear regression
and support vector machines.

For both linear regression and support vector machines,
the Spearman correlations are weak and in some cases even
negative (-0.1 to 0.2); the hit rates reach 33.3%–52.1%. For
classification, the precision and values are low compared to
the results for the previous models. Thus it is unlikely to get
reliable predictions for new components.

7.6. Prediction with Metrics vs. Dependencies

In a last experiment, we compared classification with
metrics data against classification with dependency data (as
proposed by Schröter et al. [26]). For the classification, we
used a support vector machine with Variant 1 (V1ÕV2).

Table 7 shows the results for Track T1, Project P1,
Project P2, and Project P6. In some cases, we can observe
high values for precision (>0.7) and recall (>0.7); how-
ever, both models fail to reach good predictions in all situa-
tions. It is noteworthy that the results are very similar, thus
we cannot recommend which approach should be preferred
over the other.

8. Lessons Learned

Software archives such as change and defect histories
provide lots of valuable data about the quality of the prod-
uct. As quality assurance managers, we of course have an
idea of what the most defect-prone components or what the
most risky components are. However, the abundance of
facts extracted from software archives allows us to look at a
far more complete and detailed picture. Quoting one of the
SAP team leaders: “You always remember the extremes, the



(a) Track T1

Precision Recall

Metrics 5% 0.750 0.272
10% 0.521 0.369
20% 0.428 0.552

Dependencies 5% 0.708 0.265
10% 0.568 0.328
20% 0.430 0.434

(b) Project P1

Precision Recall

Metrics 5% 0.227 0.322
10% 0.314 0.493
20% 0.412 0.600

Dependencies 5% 0.277 0.384
10% 0.344 0.505
20% 0.481 0.509

(c) Project P2

Precision Recall

Metrics 5% 0.866 0.433
10% 0.477 0.583
20% 0.488 0.764

Dependencies 5% 0.818 0.360
10% 0.648 0.558
20% 0.606 0.465

(d) Project P6

Precision Recall

Metrics 5% 0.363 0.533
10% 0.419 0.433
20% 0.531 0.539

Dependencies 5% 0.583 0.466
10% 0.392 0.366
20% 0.469 0.492

Table 7. Classification results of models using met-
rics vs. dependencies as input features.

best and the worst in quality, and you learn from them. This
data, however, gives you all the shades of gray, for hundreds
of projects, and thus far more than any individual could ever
remember or summarize.” This was our first lesson learned:

Software archives are reliable, easily accessible,
and complete source for defect data.

As it came to predicting defects, we were generally sat-
isfied with the results; yet, we felt we could have achieved

more. The study of Nagappan et al. [21] showed a much
higher predictive power for complexity metrics and a num-
ber of well-known Microsoft products such as Internet Ex-
plorer; likewise, the study of Schröter et al. [26] showed bet-
ter prediction results for imports and the Eclipse program-
ming environment. We had expected that by incorporating
the best features from both these studies, we would obtain
similar predictive power, but this was not the case.

What is it that makes our experience different from the
Microsoft and Eclipse environments? For us, a crucial point
is that all studies mentioned above predicted defects within
a single project. In fact, one of the key results of Nagap-
pan et al. [21] was that predictors obtained from one project
could only rarely be applied to another project. In contrast,
our study encompassed and summarized Java code from
several hundred large-scale, individual projects, which all
differ in their domain, their maturity, their criticality, their
team members, their testing, their reviewing—but few of
these features, if any, actually end up in code as measurable
quantities. A piece of code will have considerably fewer
defects if it was thoroughly tested or reviewed. Yet, one
cannot tell this from the code alone—one needs all the con-
text.

Since our predictors eventually predict defect counts
based on similarity to known artifacts with known quality,
we should strive to take more of these process and quality
assurance features into account. This is our second lesson
learned:

Defects have many sources, and code is just one of them.

9. Conclusion and Future Work

As shown in Section 7, the predictive power increases
as soon as one stays within a single project, confirming
the results of Nagappan et al. [21] at Microsoft. We are
currently investigating methods to create clusters of similar
projects, with the aim of making precise predictions within
these clusters. One important challenge is to identify those
features by which clusters should be formed. This, however,
is part of the general research question: Which features are
there that allow us to predict defect counts? We are not sure
whether we will ever be able to answer this question in a
short sentence. What we know, however, is that any pre-
diction of this kind will be self-defeating. In fact, we hope
it will be self-defeating—because once we know where the
defects will be, we will do our best to obliterate them.
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