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1 Motivation

Every large program contains a small fraction of func-
tionality that resists proper encapsulation. Code for
debugging, logging, or locking is hard to conceal us-
ing object-oriented mechanisms alone. As a result,
this code ends up scattered across many classes, which
makes it a maintenance problem. At the same time,
this code is largely orthogonal to surrounding (or
mainline) code as it rarely impacts control or data
flow. This observation gave rise to aspect-oriented
programming (AOP) as a solution: Functionality is
encapsulated in so-called aspects that are woven into
mainline code during compilation.

For existing projects to benefit from AOP, the
cross-cutting concerns must be identified first; this
task is called aspect mining. In this paper we address
it based on the hypothesis that a typical cross-cutting
concerns is added to a project within a short amount
of development time: We mine CVS archives for sets
of methods that got added together in various unre-
lated locations. To compute these efficiently, we apply
formal concept analysis [3]—an algebraic theory. In
this paper, we describe the basic idea and report on
results from an initial evaluation of our technique.

2 Mining Cross-Cutting Concerns

In our approach we first collect the data that repre-
sents the history of a project, namely all transactions
to the CVS archive of the project. In a second step, we
use formal concept analysis to mine aspect candidates
from each transaction.

2.1 Version Archives and Transactions
The history of a project is characterized by a sequence
of CVS transaction. Each transaction represents the
changes, i.e. addition and deletions, between the pre-
vious and the current version. Motivated by our previ-
ous dynamic aspect mining approaches that analysed
program traces [1, 2], we are only interested in changes
that insert (or delete) calls to methods. As we are in-
terested in the introduction of cross-cutting concerns
(due to our hypothesis that aspects emerge over time)
we omit deletions of method calls and concentrate ex-
clusively on additions of method calls. A method call
is characterized by two components: a location l ∈ L
where the call originates (in the body of a method)
and the method m ∈M being called.
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Figure 1: Maximal blocks represent aspect candidates
in a transaction (left). Here, 14 candidates form a
lattice of super and sub aspects (right).

Certain additions of method calls are suspect:
when a small set M ⊆ M of (related) methods calls
is added in many (unrelated) locations L ⊆ L, this
addition is likely to introduce a cross-cutting concern.
We therefore represent an aspect candidate as a pair
(L,M) of locations and methods. Our goal is to iden-
tify the most promising such pairs for each transac-
tion.

2.2 Formal Concept Analysis
A single transaction of method call additions can be
represented as a table with method locations as rows,
and method calls as columns: Has a method call m
been added in a location l, the intersection of m and
l is marked by a cross in the table (Fig. 1, left).

As an aspect candidate is a pair (L,M) of locations
and methods, it is represented in the table by a rect-
angle of crosses which is a maximal block, e.g., see the
grey-shaded rectangles in Fig. 1. To make these blocks
visible it is necessary to re-order rows and columns.

It is easy to identify the addition of calls to a single
method—these are represented by n × 1 blocks. No
obvious solution exist to identify all locations where
two methods like lock and unlock were added when
these names are not known beforehand. To identify
such a n×2 block, both rows and columns need to be
re-ordered.

Identifying all maximal blocks in a cross table (or
transaction) T ⊆ L×M is provided by the algebraic
theory of formal concepts. A maximal block (or aspect
candidate) is a pair (L, M) where the following holds:

L = {l ∈ L | (m, l) for all m ∈ M}
M = {m ∈M | (m, l) for all l ∈ L}
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Figure 2: Lattice of aspect candidates from a commit
to Eclipse CVS on 2004-03-01 by developer ptff.

Each block (L,M) is maximal in the following sense:
We cannot add another method m to M without
shrinking L to ensure that all locations in L call m.
Likewise, we cannot add another location l to L with-
out shrinking M . The definition allows for blocks of
any size. However, we consider only a block that cross-
cuts at least 7 locations an aspect candidate.

The blocks of a transaction form a lattice given the
following partial order: (L,M) ≤ (L′,M ′) iff L ⊆
L′. A sub block cross-cuts fewer locations than its
super block but calls more methods (c.f. Fig. 1). The
maximal blocks of a transaction and their lattice may
be computed efficiently [4] and we use this to compute
all aspect candidates (L,M).

3 First Application

In an initial evaluation we applied our analysis to the
Eclipse as well as to the ArgoUML CVS repository.
First results are promising and support our hypoth-
esis that specific cross-cutting concerns may be iden-
tified by analyzing CVS transations. The following
examples gives a first impression.

Figure 2 shows the lattice of all blocks of a Eclipse
CVS commit transaction on 2004-03-01. In the lat-
tice two blocks are connected if they are in a direct
super/sub-block relation. Nodes are given the shape
of the corresponding block which gives prominence
to large aspect candidates: For example, candidate 6
contains 14 location where calls to unsupportedIn2()

were added. This method throws an exception if the
operation called is not supported at API level 2.0.

The second example we want to present here is
from ArgoUML. The transaction with the log message
“Made the methods look a little more alike. Collected
the numerous IllegalArgument calls in methods. [. . . ]”
inserted many cross-cutting calls to illegalArgument

or one of its variants. These calls are always last in
the method body:

public String getValueOfTag(Object handle) {

if (handle instanceof MTaggedValue) {

return ((MTaggedValue) handle).getValue();

}

return illegalArgumentString(handle);

}

In this case the method illegalArgumentString throws
an IllegalArgumentException and returns a null ob-

ject. Most of the 262 calls to illegalArgument meth-
ods could have been realized as aspects.

4 Conclusions

When calls to a small set of functions are added to
many locations, this is likely to represent a cross-
cutting concern, especially when such an addition
happens in a single CVS transaction. We leverage
this observation to mine aspect candidates from CVS

repositories. Because transactions are typically small
and we mine one transaction at a time, our min-
ing scales well: we are the first to report aspects for
Eclipse, which comprises over 1.6 million lines of code
and about 13 000 classes—which is our first contribu-
tion.

The identification of aspects is based on co-
addition: the same set of calls is added in many
locations. We compute all co-additions of a trans-
action efficiently using concept analysis and identify
the most likely aspects. Concept analysis provides a
conceptual and algorithmic framework to identify co-
additions and thus aspect candidates—which is our
second contribution.
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