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1 Motivation

As object-oriented programs evolve, they may suf-
fer from the “tyranny of dominant decomposition”:
The program can be modularised only one way at a
time, leaving cross-cutting concerns scattered across
many modules and tangled with one another. Aspect-
oriented programming (AOP) tries to remedy this
by encapsulating these concerns into aspects. As-
pect mining identifies such cross-cutting concerns and
thus helps to migrate existing software to an aspect-
oriented program.

Aspect mining of large software system like Eclipse
is a problem: dynamic approaches depend on test
cases and have trouble covering all code and thus de-
tecting all cross-cutting functionality. And static ap-
proaches simply cannot analyse systems this big un-
less they work incrementally.

We offer a new approach based on the observa-
tion that cross-cutting functionality does not exist
from the beginning. Instead, it is introduced over
time. More specifically, we speculate that consider-
able cross-cutting functionality is introduced within
short periods of time. To find these, we analyse code
additions from development tasks as they are recorded
in a software repository like CVS. Since we analyse
one task at a time, our approach is independent of a
project’s total size. This enables us to report cross-
cutting functionality for Eclipse, a 1.6 MLOC Java
program. In this paper we sketch the basic idea of
history-based aspect mining and some initial results.

2 History-based Aspect Mining

Previous approaches to aspect mining considered only
a single version of a program using static and dynamic
program analysis techniques. We introduce the ad-
ditional dimension of time by mining CVS transac-
tions that introduce new code. Within each transac-
tion we identify those changes that are likely to in-
troduce cross-cutting concerns, which we call aspect
candidates.

2.1 Transactions and Aspect Candidates
The history of a program can be modelled as a se-
quence of transactions. A single transaction collects
all code changes between two program versions made
by a programmer to complete one development task.
From a technical point of view, a transactions is de-

fined by the kind of version archive we analyse. We
analyse projects managed with CVS, but our approach
extends to any version archive.

Motivated by our previous dynamic aspect mining
approaches that analysed program traces [1, 2], we
base our history-based technique on changes that in-
sert or delete method calls. As we are interested in the
introduction of cross-cutting concerns, we take a sim-
plified view and concentrate on method call additions
only, omitting deletions. This leads to the following
model of a transaction: A transaction is a set of ad-
ditions, each represented by a pair (l,m) of a location
and a method. The location l denotes where the call
was added (a method body), and the method m de-
notes the call that was added.

The addition of a method call m (like notify())
in a location l is likely to be cross-cutting if the same
call (to notify()) is added in many other locations
as well. To avoid false positives, we require an aspect
candidate to cross-cut at least eight locations. Hence,
we partition a transaction into sets of additions that
introduce a call to the same method but only consider
sets with at least 8 elements.

2.2 Ranking Aspect Candidates
Our goal is not an automatic refactoring based on our
analysis. Instead, we like to rank aspect candidates
for manual inspection. Our first criterion is to rank
aspect candidates by the number cross-cut locations.
However, this still leads to many false positives: calls
to methods like hasNext() are frequently inserted
into many locations but do not represent cross-cutting
functionality.

Because calls to methods like hasNext() or
print() are added frequently, these additions are
present in many transactions. On the other hand,
calls to truly cross-cutting functionality are much less
frequent. We therefore consider the fragmentation
of an aspect candidate: the number of transactions
where it was found. A candidate with low fragmen-
tation is ranked higher than a candidate with high
fragmentation; candidates of the same fragmentation
are ranked by size.

Manual inspection of our ranking revealed that
some true aspect candidates ranked low because they
were introduced in one transaction and extended later,
possibly by a different developer. We therefore chose
to abandon ranking by fragmentation in favour of



ranking by compactness: the ratio between the cross-
cut locations in the transaction at hand and the to-
tal number of locations where that call was added in
other transactions. We thus calculate compactness
per transaction and per candidate; for our ranking
we only consider the maximal compactness of a can-
didate. Ranking by compactness ranks common calls
like hasNext() low but does not penalise cross-cutting
calls that are spread over few transactions.

3 First Experiences

We performed an initial evaluation of history-based
aspect mining by applying it to Eclipse 3.2M3. It
currently comprises 1 675 kLOC in just under 13 000
classes with more than 74 000 methods. We chose this
industrial-sized project for it’s many developers and
large history. First results are very promising and sup-
port our hypothesis that cross-cutting may not exist
from the beginning but emerge over time. The follow-
ing example illustrates that.

On November 10, 2004, Silenio Quarti commit-
ted code changes “76595 (new lock)” to the Eclipse
CVS repository. These changes fixed the bug #76595
“Hang in gfk pixbuf new” that reported a deadlock
(see https://bugs.eclipse.org/) and required the
implementation of a new locking mechanism for sev-
eral platforms. The extent of the modification was
immense: He modified 2 573 methods and inserted in
1 284 methods a call to the lock method, as well as
a call to an unlock method. Obviously, AOP could
have been used to weave in this locking mechanism.

Another example for a cross-cutting concern is the
call to method dumpPcNumber which was inserted to
205 methods in the class DefaultBytecodeVisitor.
This class implements a visitor for bytecode, in par-
ticular one method for each bytecode instruction; the
code below shows the method for instruction aload 0.

public void _aload_0(int pc) {

dumpPcNumber(pc);

buffer.append(OpcodeStringValues

.BYTECODE_NAMES[IOpcodeMnemonics.ALOAD_0]);

writeNewLine();

}

The call to dumpPcNumber can obviously be realised
as an aspect. However, in this case aspect-oriented
programming can even generate all 205 methods (in-
cluding comment) since the methods differ only in the
name of the bytecode instruction.

4 Related Work

We are the first to introduce the additional dimension
of time to aspect mining by leveraging version his-
tory to mine aspect candidates. Previous approaches
were either dynamic, static, or hybrid program anal-
ysis techniques, none of which dealt with several ver-
sions of a software system. We believe that with our
work we will not only be scalable and have high pre-
cision. We can also overcome the usual problems of

too low test case coverage or false positives due to
analysing non-executable code.

However, mining software repositories itself has
been used before, such as mining co-change, and
more recently the extension to mining co-addition of
method calls. Williams and Hollingsworth use it to
mine pairs of functions that form usage patterns from
version archives [4]. Livshits and Zimmermann use
it to locate patterns of arbitrary size and apply dy-
namic analysis to validate their patterns and identify
violations [3]. Our approach also considers the addi-
tion of method calls, however, we do not focus on calls
that are inserted together but on locations where the
same call is inserted. Thus, we identify cross-cutting
concerns rather than usage patterns.

5 Conclusions and Consequences

Analysing a project’s history to identify cross-cutting
concerns proved to be promising, scaling well to
industrial-sized projects with millions LOC. Thus, we
are confident that taking lessons from history will help
us to improve and learn about today’s software.

We plan a thorough evaluation. We aim at min-
ing other open-source projects as well as the aspect
mining benchmark software system JHotDraw. This
includes a careful evaluation of all results from these
projects as well as of the tremendous amount of aspect
candidates mined from Eclipse, including the calcula-
tion of our approach’s precision, and a comparison
of how the different ranking techniques perform. Fur-
thermore, we plan to cross-validate our approach with
other aspect mining approaches as well as to compare
its performance with other version archive analysis
techniques.
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