
Frequently Asked Questions in Bug Reports

Silvia Breu*
silvia.breu@cl.cam.ac.uk

Rahul Premraj‡
rpremraj@cs.vu.nl

Jonathan Sillito+

sillito@ucalgary.ca
Thomas Zimmermann+¶

tz@acm.org (contact author)

* Computer Laboratory, University of Cambridge, UK
+ University of Calgary, Canada

‡ Vrije Universiteit, Amsterdam, The Netherlands
¶Microsoft Research, Redmond, USA

ABSTRACT
Bug tracking systems play a central role in software development
since they allow users and developers to submit and discuss bugs
and new features. To better understand information and communi-
cation needs in bug tracking, we analysed what questions are asked
in bug reports. We sampled 600 bug reports from the MOZILLA and
ECLIPSE projects and located 947 questions in the reports. Next, we
used an open card sort and identified eight categories of questions,
which can further be broken down into forty groups. We show the
value of this catalogue of frequently asked questions with a large
quantitative and qualitative study on when questions are asked and
how they are answered. A consequence of our results is that con-
stant user involvement is crucial for successful bug reports and that
better tools are needed to support this.

Categories and Subject Descriptors:
D.2.5 [Software Engineering]: Testing and Debugging; D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and Enhancement

General Terms: Human Factors, Management, Measurement

1. INTRODUCTION
In open-source, bug tracking systems are an important part of how
teams (such as the ECLIPSE and MOZILLA teams) interact with
their user communities. As a consequence, users are more involved
in the bug fixing process: they not only submit the original bug re-
ports but also participate in discussions of how to fix bugs. Thus
they help to make decisions about the future direction of a product.

To a large extent, bug tracking systems serve as the medium
through which developers and users interact and communicate.
However, friction arises when fixing bugs: developers get annoyed
and impatient over incomplete bug reports and users are frustrated
when their bugs are not immediately fixed [6, 15].

In order to better understand such communities and how they
collaborate and interact with each other, we analysed 600 bug re-
ports from the ECLIPSE and MOZILLA projects. In particular, we
focused on what kind of questions are asked in bug reports and their
answers. Such questions implicitly describe information needs for
bug fixing (Section 3). We then analysed different aspects, such

Technical Report 2009-924-03. Published online in March 2009.
Department of Computer Science. University of Calgary, AB, Canada.

as when are questions asked (question time), how often are they
answered (response rate), and how much time takes it to receive
an answer (response time). For each aspect, we revealed several
patterns that help to guide designing better bug tracking tools.

Earlier work on information needs in software development fo-
cused on software maintenance tasks [18, 23] and the day-to-day
needs of collocated development teams [16]. In contrast, our study
focuses specifically on bug tracking and considers the entire life
cycle of bug reports, which involves many different tasks, such as
triaging, debugging, fixing, testing, and reviewing code. We also
consider users who report bugs in our study.

More specifically, we make the following contributions:

1. Catalogue of frequently asked questions in bug reports. We
identified a catalogue of questions asked in bug reports both
ways between users and developers. It consists of eight cate-
gories and 40 sub-categories, derived from 947 questions in
600 bug reports for ECLIPSE and MOZILLA. Most questions
are related to debugging and fixing the bug. Many questions
also request further information or relate to bug triaging ac-
tivities (Section 4).

2. Statistical analysis of question time, response rate and time.
For each question, we collected whether and when it was an-
swered. Questions which discuss corrections are more likely
to be answered. In contrast, answers to triaging and resolu-
tion questions take longer. In MOZILLA, questions addressed
to developers are more likely to be answered than questions
addressed to users (Section 5).

3. Qualitative analysis of bug reports. We analysed bug reports
with a low response rate or repeated assign-reassign events.
We found that bug reports are fixed faster when the reporter
participates. Reassignment of bugs to other developers was
also an indicator for progress (Section 6).

4. Consequences for bug tracking. Our study has several im-
plications for bug tracking systems, e.g., to become more
community-oriented and explicitly address changing infor-
mation needs (Section 7).

We start this paper with a discussion of related work (Section 2)
and conclude it in Section 8.

2. RELATED WORK
Several studies have looked at the information needs of program-
mers when they design or develop software. Information needs of
developers in collocated development teams were studied by Ko et
al. [16]. The authors observed the daily work of developers and
noted the types of information desired—they identified 21 different
information types in the collected data.

University of Calgary Technical Report 2009-924-03

Sillito et al. [23] examined the kinds of questions that program-
mers ask during change tasks. An extensive collection of 44 differ-
ent kinds of questions were identified, which were classified into
four main categories: finding initial focus points, building on those
points, understanding a sub-graph, and questions over groups of
sub-graphs.

Johnson and Erdem [14] examined questions posted to Usenet
newsgroups and categorised them into three classes: goal-oriented,
symptom-oriented, and system-oriented. Erdem et al. [9] analysed
the questions further along with questions from a literature survey
to develop a model of questions that programmers ask. Herbsleb
and Kuwana [11] focused on software designers and investigated
the types of questions that get asked during design meetings.

In the bug fixing context, Ko et al. [17] looked at thousands of
bug report titles and found most of them following, e.g., certain
structures and references to software entities and behaviour, impli-
cating that new bug report forms could incorporate these findings
to achieve better tools. Aranda et al. [2] reported on a field study of
coordination activities around bug fixing at Microsoft. They identi-
fied common bug fixing coordination patterns and provided impli-
cations for coordination in software development.

Bettenburg et al. [5, 6] conducted a survey on developers and
users from APACHE, ECLIPSE, and MOZILLA to determine which
information contents, in their opinions, comprise good quality bug
reports. Their CUEZILLA tool leveraged the responses from the
survey to measure quality of bug reports in real-time and provide
immediate feedback to reporters on enhancing information quality.
Just et al. [15] analysed the responses from the same survey to sug-
gest improvements to make bug tracking systems easier to use and
facilitate submission of better quality bug reports. Lastly, another
study by Bettenburg et al. [7] argued for merging of duplicate bug
reports along with the originals to make more unique information
about the bug available to developers.

In contrast to these works, our research has focused on questions
that are asked by developers when they are in the process of fix-
ing bugs. During these tasks, their information needs are different
as compared to when they undertake new development or software
evolution related tasks. Our research provides their typical infor-
mation needs to reproduce, understand, debug, and eventually fix
bugs.

3. DATA COLLECTION
For our study, we analysed the bug repositories of two large
open-source projects, ECLIPSE1 and MOZILLA2. We selected these
projects because both of them have many developers and users and
a long development history.

Combined, both projects have over 600 000 bug reports, which
are too many to be analysed manually. Therefore, we randomly
sampled 300 bug reports for each project and identified the ques-
tions that were asked (Section 3.1). From the 600 bug reports, we
extracted 947 questions, which we next grouped into categories us-
ing a card sort (Section 3.2).

1ECLIPSE is a popular integrated development environment for
Java and other programming languages [8]. As of July 6, 2008,
the bug database for ECLIPSE contained 238 541 bug reports, dat-
ing back to October 2001.
2MOZILLA is a suite of programs for web browsing and collabora-
tion (such as email client, calendar, and address book). As of July 7,
2008, its bug database contained 435 392 bug reports, dating back
to April 1998.

3.1 Collecting Questions
To better understand information needs, we extracted questions
from bug reports. Questions come in different forms, with dif-
ferent intentions, and not all of them describe information needs.
Therefore, we used the following selection criteria: a question rel-
evant for our study is any text that asks for information or feedback
that is related to the bug or fix. In particular, this means that we
excluded from our analysis: requests for action (unless they asked
for confirmation), rhetorical questions (no response expected), and
questions unrelated to the bug or to fixing it.

Here are a few examples to illustrate what we consider to be a
question.

4 “Which operating system are you using?” → asks for information
related to a bug

4 “Why the tabs instead of putting this on the first page of the wizard?”
→ ask for the reasoning behind a proposed fix

4 “Would you mind giving the changes a once-over after I make
them?”→ asks a developer for feedback on changes

In contrast, here are examples of text that we did not consider to
be questions for the purpose of our study.

8 “There is no mozilla bug here, and were we to cater to the obvious
bugs of Delphi, then what happens when the next implementer comes
along who also misinterpreted the spec and thought the header was
mandatory?”→ rhetorical question, no information seeking

8 “Can you commit it to SUNBIRD_ 0_ 3_ BRANCH (and the other
branches/trunk) before todays (sic) nightly build is produced?”
→ request for action, no answer expected

8 “What is a child entry [when defining access rules]?”→ unrelated
to the bug and its fix3

For each identified question, we recorded the following informa-
tion on an index card (as illustrated in Figure 1):

• the bug id of the bug report;

• the number of the comment that contains the question (the
initial bug description has the number 0);

• the actual question; if needed we added the context to make
questions self-contained;

• whether the question is addressed at developers, users, or
both (i.e., who is expected to respond);

• whether the question is regarding the bug, fix, or both;

• and responses, if any, as a list of comment numbers (we only
considered responses within the same report).

After collecting all questions on index cards, we entered all data
into a database and added author and time information (via the
bug id and comment numbers). With author information, we can
distinguish between different roles such as developer, submitter,
and assignee. With time information and the comment numbers for
questions and responses, we can compute response times.

3.2 Card Sort
To group questions into categories, we conducted a card sort. Card
sorting is an inexpensive sorting technique that is widely used in
information architecture to create mental models and derive tax-
onomies from input data [3]. In our case it helps to organise the
questions into hierarchies to deduce a higher level of abstraction
and identify common themes.

A card sort involves three phases:
3The question is not related to a bug or fix because a user asked in a
bug report how to use the new ECLIPSE feature “type access rule”.

2

University of Calgary Technical Report 2009-924-03

If someone could
provide a stack trace, that
would be a huge help.

61287.#16

@BOTH

{#18, 19} BUG

question bug report number comment number
of question

comment numbers
of answers

related to

question
addressee

answer to question

comment number
of answer

question in comment

comment number
of question

Figure 1: Example index card and bug report

1. In the preparation phase, participants of the card sort are se-
lected and the cards are created (see Section 3.1).

2. In the execution phase, cards are sorted into meaningful
groups with a descriptive title.

3. In the analysis phase, abstract hierarchies are formed in order
to deduce general categories and themes.

For our study, we applied an open card sort, meaning there were
no predefined groups, instead the groups emerged and evolved dur-
ing the sorting process. In contrast, a closed card sort has prede-
fined groups and is typically applied when themes are known in
advance, which was not the case for our study. The results of our
card sort are described in Section 4.

3.3 Threats to Validity
Observers of communication risk misplacing the context as they
may lack full understanding of its nature and background. This
threat applied to us, too, when we identified questions in our sample
of bug reports. To minimise the likelihood of misinterpretation, one
of the authors created the cards and repeatedly reviewed them to
comprehend the context. This helped to confirm whether indeed
the contents posed a question requesting information or feedback
(as per our agreed definition of questions relevant for our study).

Open card sorts are inherently subjective because different
themes are likely to emerge from independent card sorts conducted
by the same or different people. To ensure the integrity of our cat-
egories, the cards were sorted by the same author several times to
identify initial themes. Next, they were reviewed by all authors
collectively to agree on the final set of categories as presented next.

4. CATALOGUE OF QUESTIONS
After we finished the card sort, we had 40 groups, which we clus-
tered into eight categories.4 We now describe each category and
provide examples of questions. The numbers in parentheses indi-
cate how many times questions in each group were asked.

Category #1: Missing Information.
Often, submitted bug reports are incomplete and miss information
relevant to reproduce a bug. In fact, this is one of the most fre-
quent problems that developers face with bug reports [6], and is
confirmed by our study: missing information is the third-largest cat-
egory.

4Out of the 947 questions, seven did not fit any of the identified
groups and were ignored for the remaining analysis.

To better understand a bug before starting to debug, developers
request information such as steps to reproduce, build numbers, OS,
test cases, examples, program output, and screenshots.

→ in total 143 questions, or 15.1% of all questions.

steps to reproduce: (16×) “How do I actually reproduce this border prob-
lem?”, “Can you give a description of when this happens to you?”

environment: build, OS, installed software (51×) “Can you provide a build
number?”, “Which operating system?”, “Do you have flash in-
stalled?”

tests and examples (16×) “Could you attach test suite or strip it down to a
sufficient example?”, “What are you trying? Get some real example
of your code here. . . ”

program output: log file, talkback, stack trace (32×) “This bug needs a
stacktrace (sic).”, “Talkback ID from crash?”

miscellaneous information requests (28×) “Could you provide a screen-
shot?”, “Where do you crash in profile manager?”

Category #2: Clarification.
Often developers have all relevant information about a failure, but
need to clarify certain aspects, which they did not fully understand.
The questions in this category relate to the bug in general, and not
to possible corrections, which are part of a separate category (cor-
rection).

Clarification questions can be specific or very general. Often de-
velopers are even clueless what problem is reported in a bug (“don’t
understand, please explain”). Some questions come from users
who want to know if they have been helpful or whether additional
information is needed.

→ in total 114 questions, or 12.0% of all questions.

asking something specific (16×) “How do you select a different input
method?”, “Where’s a java-applet on this page?”

do you mean? (24×) “Do you mean in the ’browser’ tab?”, “Are you say-
ing you cannot download a file?”

don’t understand, please explain (28×) “I am not clear on what the remain
problem is. Can someone explain it to me?”, “I don’t understand
why you would want to export web app libraries?”

questions about provided data (12×) “Was the original dump a ’copy’ on
the call stack?”, “What do the port numbers refer to?”

user regarding his helpfulness (5×) “[Developer,] Is there anything else I
can do to help troubleshoot this problem?”, “Were you able to repro-
duce using the steps [I, the reporter,] described in comment #7?”

miscellaneous clarification questions (29×) “Which part do I need to ver-
ify for this bug?”, “What should the path have been?”

3

University of Calgary Technical Report 2009-924-03

Category #3: Triaging.
Bug triage is the process of deciding which bugs should be fixed
and assigning them to developers. It includes the decision whether
a behaviour is actually incorrect (“bug or feature?"). Often bugs
are submitted to wrong components or even projects, e.g., to
MOZILLA instead of JBoss (“not our bug?”). Sometimes two
different bugs are described within the same report or a new bug
emerges during bug fixing (“separate bug report?”). Most ques-
tions in this category, however, are about bug duplicates and who
should fix a bug, both of which have been extensively covered by
research [1, 7, 12, 22, 24].

→ in total 94 questions, or 9.9% of all questions.

duplicate or not? (35×) “Has this been investigated previously?”, “Dupe
of bug 114853?”

who could fix it? (10×) “Who gets the Solaris problem?”, “Anybody want
to own this bug?”

could you fix it? (14×) “Can you do the fix as suggested?”, “Could you
take care of this?”

bug or feature? (5×) “Is that intended or should it be fixed?”, “Is this nor-
mal or a bug?”

shall we fix it? (9×) “Is this little nit worth picking?”, “Not sure whether
we care enough to try to change this?”

separate bug report? (7×) “Should this be written up as a separate ’en-
hancement’ bug?”, “Shall we open a new bug or rename the sum-
mary of this one?”

correct component? (5×) “Is dom the correct component?”, “Can you ver-
ify that this is a reconciler problem?”

not our bug? (9×) “Should I move this bug report to JCore-code assist?”,
“Is this a JBoss bug that needs reporting?”

Category #4: Debugging.
This category contains questions related to the process of debug-
ging. It is the second-largest category, which indicates that debug-
ging is a highly collaborative activity, involving both developers
and users alike. Ko et al. made a similar observation about the col-
laborative nature of debugging [16].

In general, developers ask questions about behaviour and state
of a program, and about code pieces. Sometimes they require input
from users and ask them to rerun programs with different settings.

→ in total 176 questions, or 18.6% of all questions.

questions about the behaviour of a program (65×) “Does this exception
happen consistently for you?”

questions about state, setting (18×) “Do you have autobuild on?”

questions that require action and/or rerun (42×) “Can you see what hap-
pens with a new profile?”

questions about code (25×) “Could it be because the user name field has
“type = input” rather than “type = text”?”

questions that ask why or why not (17×) “Why do all the radio buttons
have two gray dots now?”

miscellaneous debugging questions (9×) “Any further comments or
ideas?”

Category #5: Correction.
This category contains questions that discuss how to correct a bug.
It is by far the largest category, which indicates that once develop-
ers found the cause of a bug, they discuss solutions and alternatives
before they fix the bug. The questions in the first group suggestion
& feedback requests are asked before any changes are made and
discuss possible solutions. The questions in understanding fixes re-
late to an implemented solution, often a patch. The last group are

questions related to code reviews, where developers ask about or
get feedback on their solution. Reviewing code is considered an
important quality assurance mechanism in the open source com-
munity [21].
→ in total 240 questions, or 25.3% of all questions.

suggestion & feedback requests (80×) “Should we just remove the get-
BuiltIn check StreamHandlerFactory?”, “Do we want to change all
’click’ to ’choose’?”

understanding fixes (87×) “Maybe I’m not understanding this statement
but you could use a ConverterProvider as an application-wide sin-
gleton (for your own code) but the library would not include the
concept of an application-wide singleton. Correct?”

code reviews (73×) “How about a review when you get a chance?”, “Can
you rewrite the patch for the tip?”

Category #6: Status Enquiry.
This category contains all questions that relate to the status (in-
cluding resolution and priority) of a bug or its fix. Most of the
questions are about the progress in general or whether a fix will
make a certain version or build of the program. We also included
questions about possible workarounds in the category because bugs
with workarounds often have a lower priority.
→ in total 80 questions, or 8.4% of all questions.

questions about progress (28×) “Any progress on this one?”

questions about target version (19×) “Will this make M13? M14?”

questions about workaround (7×) “Can we see about recommending peo-
ple upgrade viewpoint if they continue to crash with this?”

questions about related bugs (9×) “Now that bug 128586 is fixed, is this
bug fixed, too?”

questions about resolution and priority (11×) “IF (sic) this is fixed on
trunk, how come it’s not marked RESOLVED-FIXED?”

reminders (6×) “Care to actually answer the question I asked?”

Category #7: Resolution.
This category contains questions that ask whether a bug is resolved
or whether it is still a problem. Typically, these questions are asked
after workarounds have been mentioned, after new builds, or af-
ter longer periods of inactivity in the bug report. The latter kind of
questions ensures that developers only spend their time on bugs that
still matter to users. If users do not respond to such questions, the
bugs get closed. The MOZILLA project even automated this process
and posts automated messages to bug reports (see Figure 2). How-
ever, closing bugs automatically after inactivity is not very popular
among users [15].
→ in total 68 questions, or 7.2% of all questions.

after workaround (7×) “Does downgrading to 0.9.8 solve the problem?”

after new build (35×) “Do you still see the problem using FF2 or trunk?”

after inactivity (17×) “Has this been solved for any of you?”

automated message after inactivity (9×) “This is an automated message,
with ID ’auto-resolve01’. . . ” (see Figure 2).

Category #8: Process.
This category contains questions about administrative tasks, best
practices, and procedures.
→ in total 25 questions, or 2.6% of all questions.

administration (11×) “Do I have the authority to review code?”, “Can
you give me build engineer status/full shell access to down-
load.eclipse.org?”

procedures (14×) “How should we track these kinds of issues?”, “What
should I do to get this through the process?”

4

University of Calgary Technical Report 2009-924-03

 ------- Comment #1 From Gervase Markham 2005-09-27 01:55:47 PST -------

This is an automated message, with ID "auto-resolve01".

This bug has had no comments for a long time. Statistically, we have found that
bug reports that have not been confirmed by a second user after three months are
highly unlikely to be the source of a fix to the code.

While your input is very important to us, our resources are limited and so we
are asking for your help in focussing our efforts. If you can still reproduce
this problem in the latest version of the product (see below for how to obtain
a copy) or, for feature requests, if it's not present in the latest version and
you still believe we should implement it, please visit the URL of this bug
(given at the top of this mail) and add a comment to that effect, giving more
reproduction information if you have it.

If it is not a problem any longer, you need take no action. If this bug is not
changed in any way in the next two weeks, it will be automatically resolved.
Thank you for your help in this matter.

The latest beta releases can be obtained from:
Firefox: http://www.mozilla.org/projects/firefox/
Thunderbird: http://www.mozilla.org/products/thunderbird/releases/1.5beta1.html
Seamonkey: http://www.mozilla.org/projects/seamonkey/

 ------- Comment #2 From Gervase Markham 2005-10-13 10:26:58 PST -------

This bug has been automatically resolved after a period of inactivity (see
above
comment). If anyone thinks this is incorrect, they should feel free to reopen
it.

Figure 2: Automated message in MOZILLA.

5. STATISTICAL ANALYSIS
For each question and response (if available), we extracted time in-
formation from the bug database using the recorded bug and com-
ment numbers (see Section 3). This allowed us to investigate the
following aspects (correspond to dependent variables).5

• Question time. When are questions asked in the life cycle of
a bug report?

Out of the 940 questions, 11.3% were asked within one hour
and 35.9% within a day after submission of the bug report
(see Figure 3).

Considering only the 773 questions in resolved bug reports,
the majority of questions is asked in the first half of the bugs’
lifetimes (65.8%).

• Response rate. How many questions get answered?

Out of the 940 questions, 636 were responded to (67.66%).
Note that this number considers the presence of a response
only, it does not assess the quality of responses.

• Response time. How long does it take to get a response?

Of the 636 questions with responses, 9.8% received re-
sponses within 10 minutes, 34.2% within the hour, and
79.4% within the day (see Figure 3).

We analysed the influence of the following factors (correspond to
independent variables):

• Category — the card sort category to which the question be-
longs (for the eight categories, see Section 4).

• Addressee — question addressed at developer or user; for
the analysis, we ignored questions which were addressed to
both.

• Topic — question related to the bug or fix; for the analysis,
we ignored questions that were related to both.

• Project — question was asked in ECLIPSE or MOZILLA.

5For the statistical analysis, we used the R statistical software [20]
with the car package for the Anova tests.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Question time all 940 questions

(logarithmic scale)
1 sec 1 min 10 min 1 hour 1 day 1 month 1 year

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Question time (normalized by bug lifetime) 773 questions in resolved bugs

Early (after reporting) Late (close to resolution)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time 636 questions with responses

1 min 10 min 1 hour 1 day 1 month 1 year
(logarithmic scale)

Figure 3: Distribution of question and response time.

5.1 Experimental Set-Up
We quantitatively investigated the effect of the above four factors
on question time, response rate, and response time by adopting the
following experimental set-up throughout our analysis:

Step 1. Find out which factors exert influence.
We used a statistical modelling technique called Analysis of Vari-
ance (ANOVA) to measure which factors and interactions of fac-
tors influence the dependent variable. For example, in a three-way
ANOVA with factors A, B, and C, the model tests for the effects of
A, B, and C on the dependent variable, and also for the effects of
the interaction terms AB, AC, BC, and ABC. We preferred Type II
over Type III sum of squares for the ANOVA computation because
Type-II sums obey the principle of marginality and are better suited
for unbalanced data [19].

For our analysis, we built two ANOVA models for each dependent
variable. The first model included only category as the indepen-
dent variable, while the second model included addressee, topic,
and project. This separation was made to reduce chances of false
negative errors (i.e., accepting the null hypothesis when it is false),
which is a plausible effect of the high number of levels (discrete
values taken by the factor) in the category factor.

Factors (and interaction terms) found to have significant effects
on the dependent variable are determined by observing the corre-
sponding p-value which is a measure of arriving at the result purely
by chance. Typically, a threshold value of p ≤ .05 is considered
to treat the factor significant and worthy of further analysis. Unless
noted otherwise all results are significant at this level.

Step 2. Confirm and assess the effect of factors.
ANOVA is followed by post-hoc analyses on statistically significant
factors and interaction terms. In contrast to ANOVA, which only
checks whether a factor significantly influences the dependent vari-
able, post-hoc analyses investigate which specific levels of the fac-
tor are different from the others. For example, if an ANOVA yields
that category influences response time, the post-hoc analysis inves-

5

University of Calgary Technical Report 2009-924-03

Process

Resolution

Status Enquiry

Correction

Debugging

Triaging

Clarification

Missing Information

0.0 0.2 0.4 0.6 0.8 1.0

Question Time by Category

Early Question Time Late

Figure 4: Boxplot of question time by category.

tigates which of the eight levels of category actually have influence
on response times and how.

The choice of statistical tests for post-hoc analysis depends on
the data to be analysed. We used t-tests for question times and
response times because their values are continuous. For response
rates we used Chi-squared tests because their response rates are
based on dichotomous data (responded to or not).

In cases where the category factor was shown as significant by
ANOVA, the post-hoc analyses were conducted by comparing each
of the eight categories to the remaining seven combined as opposed
to comparing them pairwisely. The motivation to do so was firstly
our interest to know the specific categories for which the dependent
variable differed from all others. Secondly, increasing numbers of
statistical tests progressively increase the chances of false positive
errors (i.e., rejecting the null hypothesis when it is true). This like-
lihood is reduced by applying Bonferroni correction, which is an
adjustment to the threshold p-value by dividing it by the number
of tests. Since we conducted eight tests to compare the categories,
we lowered the threshold for significance to p ≤ .00625. In the
analysis below, we report whether the specific category is signifi-
cant with and without Bonferroni correction. It is important to note
that the categories no longer significant with Bonferroni correction
are still important since they influence the dependent variable, but
their effect must be interpreted with caution.

5.2 Question Time
Analysing question time helps us understand the information needs
of developers at different stages of the bug fixing process. We com-
puted question time as the ratio of the time difference between the
comment that contained the question and when the bug was re-
ported to the lifetime of the bug report. The resulting value is nor-
malised and ranges from [0 – 1]; for the sake of simplicity, we refer
to it as question time throughout this remainder of the paper.

The two ANOVA models yielded that category (p < .001), topic
(p < .001) and project (p < .05) influence question time, but
addressee has no significant effect.

The ANOVA result for category suggests that information needs

Table 1: Response rates for questions by category.

Replied Not replied Total Response Rate (%)

Missing information 89 54 143 62.24
Clarification 72 42 114 63.16
Triaging 59 35 93 62.77
Debugging 117 59 176 66.48
Correction 189 51 240 78.75
Status Enquiry 56 24 80 70.00
Resolution 38 30 68 55.88
Process 16 9 25 64.00

Total 636 304 940 67.66

of developers change during the lifetime of bug reports. This is
also supported by Figure 4, which plots the distribution of question
times across different categories. To investigate specifically which
category of questions were timed differently from the others, we
performed the post-hoc analysis using t-tests. We found that ques-
tions related to missing information and debugging are asked early
on in the lifetime (both p < .001), suggesting that soon after the
bug is reported, developers focus on gathering all relevant informa-
tion related to the bug and to narrow candidate fix locations. On the
contrary, questions related to correction, status enquiry, and reso-
lution are asked later on in the lifetimes of bug reports (all three
p < .001). Note that all categories, with an exception of status
enquiry, were significant even after Bonferroni correction.

A noteworthy observation in Figure 4 is that question times for
all categories range across the full lifetimes of bug reports; espe-
cially notable so for bug triaging, which is commonly believed to
be undertaken soon after the bug has been reported. Instead, it ap-
pears to be an on-going activity that does not necessarily halt after
the bug report has been assigned to a developer (see Section 6 for
illustrated examples).

Topic showed also a significant effect on question time in the
ANOVA analysis. The post-hoc analysis confirmed this result and
showed statistically significant differences in the mean values for
the two levels of topic (p < .001). Questions related to fixes were
asked later in the bugs’ lifetimes than questions related to bugs.
This indicates that the focus of questions shifts from collecting in-
formation related to the bug to how the bug should be fixed.

Project also showed a significant effect in the ANOVA analy-
sis; however, the t-test could not confirm any significant effect of
project on question times.

/ Soon after a bug report has been filed, developers ask ques-
tions related to missing information and debugging.

/ Rather late in the bugs’ lifetimes, questions are asked related
to correction, status enquiry, and resolution.

/ Bug triaging is an on-going activity that occurs throughout the
life cycle of bug reports.

5.3 Response Rates
As an initial exploration of the challenges developers face in satis-
fying their information needs, we examined the effect that our inde-
pendent variables (question category, addressee, topic and project)
had on how likely questions were to be responded to.

The ANOVA models showed that category of questions has a sig-
nificant effect on response rates (p < .001). ANOVA also showed
two interaction terms to be significant, namely project:addressee
(p < .001) and topic:addressee (p < .05). Although the main fac-
tors project, addressee, and topic were also significant, they need no

6

University of Calgary Technical Report 2009-924-03

further analysis since they will be covered by the post-hoc analysis
on the interaction terms.6

The result for the category factor indicates that whether a ques-
tion is likely to receive a response depends on the type of question
that has been posed (see also Table 1). In the post-hoc analysis,
questions related to correction were more likely (response rate of
78.8% vs. 64.1%, p < .001) and questions related to resolution
were less likely to receive responses (56.0% vs. 68.7%; p < .05).
Note that of these two categories, only correction remains statisti-
cally significant after Bonferroni correction.

For the interaction term project:addressee, the post-hoc analy-
sis revealed that in the MOZILLA project, questions addressed to
developers have a significantly higher response rate of 72.2% as
compared to questions addressed to users with a response rate of
50.0% (p < .001). In addition we found that questions addressed
to users in the ECLIPSE project have a higher response rate of 69.3%
as compared to those from MOZILLA with 50.0% (p < .01). No
other significant differences were found for this interaction.

For the interaction term topic:addressee, the post-hoc analysis
showed that developers are more likely to respond to questions re-
lated to fixes than to questions related to bugs (78.2% vs. 66.4%,
significant at p < .01). No other significant differences were found
for this interaction.

/ Questions related to the correction of a bug are more likely
to receive responses; questions about the resolution of a bug are
less likely to receive responses.

/ In the MOZILLA project, questions to developers have a higher
response rate than questions to users.

/ Fix-related questions to developers have a higher response
rate than bug-related questions.

5.4 Response Times
Another aspect relevant for the analysis of replies is response time,
i.e., how quickly does the addressee respond to the question. De-
layed replies can slow down progress on bug reports, eventually
bringing some to a standstill. For example, a developer may wish
to clarify the conditions under which she can reproduce the bug.
Without a response, she is less likely to make progress on the bug.

Our analysis now focuses on the 636 questions that received re-
sponses. Response time for each question was computed as the
time difference between the comment in which the question was
posed and the first comment in which it was answered (complete-
ness of answers was disregarded). Thereafter, the data was nor-
malised by ranking the response times to meet the data assumptions
for modelling using ANOVA.

The ANOVA models only showed for category a significant influ-
ence on response time (p < .001). This means that response time
depends mostly upon the type of question that has been asked.

Our post-hoc analysis on the category factor revealed that ques-
tions related to clarification (p < .05) and process (p < .05) have
lower response times, i.e., are replied to quickly. In contrast, re-
sponses take longer for questions related to triaging (p < .01) and
resolution (p < .05). Of these four category types, only triag-
ing-related questions were statistically significant after Bonferroni
correction.

6Post-hoc analysis on significant interaction terms is conducted by
keeping the level of one factor constant and comparing the depen-
dent variable by different levels in the other factor. After repeating
this for all levels in the first factor, levels in the second factor are
now kept constant to examine differences in the first factor.

Process

Resolution

Status Enquiry

Correction

Debugging

Triaging

Clarification

Missing Information

Response Time by Category

Response Time (logarithmic scale)

1 min 1 hour 1 day 1 month 1 year

Figure 5: Boxplot of response time by category.

Figure 5 plots the response times by category (note that the plot
uses raw response times). There are cases where questions did not
receive a response until after a year, for example it took little over
four years to receive a reply for question “Is this still an issue?”
in MOZILLA bug 4633. To summarise, although a vast number
of questions receive responses quickly, others questions take much
longer and and many go unanswered (recall Section 5.3).

/ Questions related to clarification and process get answered
sooner. In contrast, questions related to bug triaging and reso-
lution take more time.

/ For some questions the responses can take up to a few years.

5.5 Threats to Validity
As with any empirical study, it is difficult to draw general conclu-
sions because any process depends on a large number of context
variables [4]. In our case, we analysed 600 bug reports from two
large open-source projects, namely ECLIPSE and MOZILLA. We ex-
pect that our findings also apply to other projects.

The observations made from the statistical analysis are based on
600 randomly sampled bug reports that may not be fully representa-
tive of their respective projects. However, the questions identified
from the sample cover a vast spectrum of categories that include
nearly every aspect of the bug fixing process. We can hence expect
that our findings are generalisable and reflective of the projects.

A common misinterpretation of empirical studies is that nothing
new is learnt (“I already knew this result”). Unfortunately, such
wisdom has rarely been shown to be true and is often quoted with-
out scientific evidence. This paper provides such evidence: some
common wisdom is confirmed and quantified (“Bug reports are
faster fixed when users participate”) while others are challenged
(“Triaging happens only after a bug report has been submitted.”).

7

University of Calgary Technical Report 2009-924-03

Legend

n a comment by commentator n. To the left of comments (space permitting) are the comment numbers.

connects question & answern question(s) related to bug n question(s) related to fix n question(s) related to both

Inactivity is indicated as a number of weeks (2w) or months (2m)Questions are aimed at end users (U), developers (D) or both (B).

188142 (M)
1517 days
3 authors

0 1

3

1

2 1

18m

4 1

Clarification

5 1

6 3

32m

D

Status

Status(2)
Correction

2

2

D

D

50151 (M)
218 days
10 authors

0 1

1

2

3 4

4 4

5 5

6 5

7 5

8 5

9 5

4m

11 6

12 5

13

1m

14 8

1m

1w

7

2w

21 10

22 4

10 4

1w

7

9

8

7

4

7 B

2 D

U

3 B

U

Clarification(2)
Missing(3)

Debugging

Clarification
Missing

Clarification

Resolution

87503 (M)
66 days
8 authors

1

3

1

6

1

1

1

3

1

7

7

1

2w

1m

8

4 U

2 D
2 B

4 U

5 U

5 U

7 U

7 U

2

0

1

13

12

9

8

7

19

20

Triaging

Clarification

Missing

Missing

Resolution

Debugging
Missing

Missing

Debugging

99490 (M)
10 days
4 authors

2

0

4

1

8

5

3

1

4

4

2

4

2

1

4

3

U

U

U

U

1w

Missing

Missing

Missing

Missing
Status

242170 (M)
115 days
5 authors

0 1

3 4

1 2

2 3

4m

4 5

U

U
Clarification(2)
Debugging(2)
Triaging
Debugging

5 bugs with 27
unanswered questions

The text to the right of comments
indicates the category of questions asked.

A

26698 (E)
8 days
4 authors

0 1

1

6 4

7 3

8 3

11 3

2

4
D3

4

3 B

1

4 U

SWT

3

Debug

3

4

47618 (E)
4 days
5 authors

1

3

5

4

3

1

5 U

0

4

1

11

8

5

1

1

2 U

1

3 U

3

Build
UI

Debug

Platform

UI

63646 (E)
352 days
6 authors

1w

2w

10m

1m

0

2

7

1

6

3

15

14

17

13

16

2

2

1

1

1

5

1

1

5

5

1

6

1

2

5

Platform

SWT

3

2

5

6

3 U

D

4 D

4 D

95224 (M)
283 days
11 authors

3

5m

4

2

6

5

5

6

7

1

1

6

10

6

10

3

4

5

8

6

7

9

10

13

11

12

16

23

1w

1w

3m

1
D2

1
U11

9

8 D

1

6 U

1

6 U

4

2

5

12

6

2

4 bugs with 24
different assignments

B

To the right of comments, numbers (for
specific commentators) and names (for
component owners) indicate assignments.

Figure 6: Illustration of discussion in nine bug reports.

6. QUALITATIVE ANALYSIS
In this section, we discuss bug reports with low response rates and
frequent reassignments in more detail. Our analysis of these re-
ports yielded several insights, however, our conclusions should be
considered preliminary.

6.1 Low Response Rate
Sections 5.3 and 5.4 quantify the challenge developers face in get-
ting their questions answered in a timely fashion. In particular,
32.34% of the questions in our sample were never responded to,
and many more required hours or days before an answer was pro-
vided. To explore this issue further we have looked more closely at
five bug reports that contained many unanswered questions. This
way we have been able to carry out a preliminary analysis of 27
unanswered questions in context.

To select the bug reports for this analysis, we considered all re-
ports with at least five questions and selected the five reports with
the lowest response rates. The discussions contained in these re-
ports are illustrated in part A of Figure 6. All of these reports come
from the MOZILLA project, which we found to have lower response
rates in our sample (65.7% versus 71.3% for the ECLIPSE project).
As shown in the figure, with the exception of issue 99490, these
issues all took a significant amount of time to address and included
long stretches of time without discussion.

For the MOZILLA project 50.0% of the questions addressed to
users went unanswered, and indeed most of the 27 unanswered

questions were addressed to users (20 questions) and are related
to the bug rather than the fix (26 questions). For example, dur-
ing the discussion of bug 242170, developers asked the reporter six
questions about the bug (four in comment 1 and two in comment 2)
none of which were answered. After several months with no re-
sponse, one of the developers guessed that the problem had been
resolved and marked it as RESOLVED/WORKSFORME.

Our qualitative analysis suggests that there is an expectation by
developers that users reporting a bug, actively participate in the dis-
cussion of the bug if necessary and our statistical analysis showed
that questions addressed to users appeared throughout the life cy-
cle of a bug report (see Section 5.2). A lack of response by users
can result in a sense that reporters are not doing their part and that
their cooperation is essential for progress to be made. For example,
during the discussion of bug 99490, after several questions (asked
in comments 1, 3 and 4) had gone unanswered, in comment 6 the
developer encouraged the reporter to respond and explained that no
work would occur otherwise:

“Reporter, please work with us on this [...] Please com-
ment within the next week or so; otherwise we may
have to resolve this worksforme.”

Once the reporter responded to some of the questions, which hap-
pened in comment 7, the bug was quickly resolved.

The unanswered questions in these five issues tended to be about
information that is necessary for proper triaging, information re-

8

University of Calgary Technical Report 2009-924-03

lated to debugging, and especially to reproducing a bug. A lack
of response to such questions is particularly frustrating for devel-
opers because without the ability to reproduce a bug, generally no
progress can be made and developers tend to mark the bug as RE-
SOLVED/WORKSFORME or let it sit idle. For example, during
the discussion of bug 50151, a developer asked about the “build
number” [comment 13] along with another question clarifying what
the bug is about. There was no answer to this question and so no
progress was made for one month until a different user added some
additional information (in comment 14).

On the other hand, we also observed that some questions were
superseded or became irrelevant as the discussion progressed. This
is the case for the questions in comments 7, 8, and 9 in the dis-
cussion of bug 87503. In comment 7 the commentator asked about
what version of MOZILLA the problem occurred in and then clar-
ified in comment 8 that he meant “which build”. Commentator 5
suggested that someone checks whether or not the latest build, with
a particular patch, still has the problem. The discussion then con-
tinued, but only considering the latest build. In cases like these,
the lack of a response is not indicative of a problem, though this
appears to be the less common case.

6.2 Triaging Issues
In Section 5.2 we noted that triaging-related questions are posed
throughout the life cycle of a bug. We also suggested that discus-
sion about how to address a bug may influence who should address
it. Related to this, previous work has identified a bug pattern called
the assign/reassign cycle and hypothesised that such a pattern may
indicate a structural problem in the software or an organisational
gap [10].

To further explore assignment and reassignment issues as they
relate to questions asked, we have analysed the questions asked in
four bug reports; three from the ECLIPSE project and one from the
MOZILLA project. To select the bug reports for this analysis, we
considered all reports with at least three questions and selected the
four with the most reassignments. In this way we have been able to
carry out a preliminary analysis of 24 assignment decisions (some
to generic component owners, others to individual developers) in
context. The discussions contained in these reports are illustrated
in part B of Figure 6.

An analysis showed that some questions and the reassignments
that followed intend to help move the bug towards resolution in var-
ious ways. The most obvious were questions aimed at understand-
ing the issue sufficiently in order to get the assignment correct. For
example, during the discussion of bug 47618, the question asked in
comment 6 tried to understand under what circumstances the bug
was encountered. The answer in comment 7 led directly to the re-
assignment in comment 8 to the group responsible for the Debug
component.

Similarly, there were questions about who was responsible for a
given area and answers to these questions are important for appro-
priately assigning responsibility for the bug. For example, during
the discussion of bug 95224, the bug was assigned to commentator
5 (see comment 5) because it was believed that he was the appropri-
ate module owner. In comment 6 he denied that he was the owner
(“when did that happen?”) and reassigned the bug to a developer
who never participated in the discussion (see comment 7). No fur-
ther progress was made until commentator 6 claimed the bug five
months later (see comment 8).

In a few cases a question was asked and simultaneously the de-
veloper who could answer the question (and take the next steps with
the bug) was assigned the bug. This happened several times during
the discussion of bug 26698. In comment 2, the commentator (who

was the assignee at the time) asked a question and reassigned the
bug to the group that could answer it (“moving to Debug for com-
ment”). After tying off the ensuing discussion with members of
that group, commentator 3 took the bug back. Once he had finished
his work on the bug, he asked commentator 4 to verify what he had
done and assigned the bug to him (see comment 9). These results
suggest that multiple reassignments are not problematic in all cases
and can be a natural part of the question and answer process.

7. IMPLICATIONS FOR BUG TRACKING
In our previous work, we have discussed various shortcomings of
today’s bug tracking systems [15] and proposed several improve-
ments such as interactive feedback systems [6] and alternative han-
dling of bug duplicates [7]. Based on the results reported in this
paper, we suggest four new ways in which bug tracking systems
and practices can be improved.

Changing information needs. From the analysis of question time
in Section 5.2, we learned that the kind of questions and thus
the information needs change over a bug’s life cycle. In the
beginning most questions request missing information or de-
tails for debugging (in order to locate the source of the bug).
Later questions are mostly focused on the correction of a bug
and on status enquiries. A direct consequence is that bug
tracking systems should account for such changing informa-
tion needs. For example, in the beginning, when more infor-
mation about a bug is needed, easy ways to provide screen-
shots, stack traces, or steps to reproduce, are important. Later
in a bug’s life cycle, such interfaces can be replaced by inter-
faces that facilitate discussing the correction of the bug and
tracking its resolution.

Tool support for frequent questions. In our study, some question
categories were very frequent, e.g., review requests or sta-
tus enquiries (see Section 4). Introducing tools that help
addressing these questions in a timely and organised man-
ner will streamline bug tracking activities. As an example
consider the request for reviewing a suggested fix. If this is
clearly assigned by the bug tracking system to a developer,
e.g., through a separate work item, a code review is more
likely to be completed and is easier to track. Thus, reviewing
bug fixes becomes an active part rather than a passive, where
one waits for someone to volunteer.

Explicit handling and tracking of questions. For the MOZILLA
project 50.0% of the questions addressed to users went unan-
swered. We believe that many users do not understand the
jargon used by developers and require explicit requests, like
“please work with us on this” (see Section 6.1). A solution
for this problem could be to make the state of the discus-
sion explicit, not just the state of the bug report. For exam-
ple, developers could mark up crucial questions, which the
bug tracking system recognises and puts the bug in a state
“answers pending”. Making this state explicit sends a clear
message to all stake-holders of the bug report. One can take
this even further and collect bugs that are stuck because of
insufficient information on a special dashboard; they could
then be specifically targeted.

Community-based bug tracking The high number of unan-
swered questions in MOZILLA could result from users who
feel their job is done after initially reporting a bug. This sen-
timent is heightened by a form design in bug trackers that
emphasises reporting of information rather than interaction.

9

University of Calgary Technical Report 2009-924-03

To overcome this, bug reporting and tracking should be un-
derstood as a social activity within a community, supported
by the bug tracking system. For example, it could be more of
a project portal, which indicates the assigned developer and
her recent activities, the status of a bug, new questions in bug
reports, the history of the reporter, including bugs she had re-
ported previously and even maybe the reporter’s standing in
the community.

Joel Spolsky once noted “I’ve always felt that if you can make it
10% easier to fill in a bug report, you’ll get twice as many bug re-
ports” in his blog [13]. While usability is of importance to us, we
focus on improvements after the initial submission of a bug report.
Therefore our suggestions are unlikely to increase the number of
reports. Instead, we hope that our ongoing research will contribute
toward the development of social and interactive bug tracking sys-
tems that address the needs of users and developers alike. Our long
term aim is to increase the percentage of fixed bug reports.

8. CONCLUSIONS
To better understand information and communication needs in bug
tracking systems, we investigated questions asked in bug reports.
Specifically, we identified 947 questions in 600 bug reports from
the ECLIPSE and MOZILLA projects. We placed these into eight
categories and 40 sub-categories. These questions and categories
formed the basis of initial quantitative and qualitative analyses
which aimed at understanding the interactions around questions
about bugs.

Bug tracking systems are an important part of how teams (such
as the ECLIPSE and MOZILLA teams) interact with their user com-
munities. This interaction goes beyond users simply submitting
bugs. Many follow-up questions are posed to the reporters of bugs
and often, if a bug’s reporter does not play an active role in the
discussion of the bug, little progress can be made.

Our results highlight the importance of effectively and efficiently
engaging the user community in bug fixing activities, and keeping
them up-to-date about the status of the bug. We believe that our
results will help to form the design of new bug tracking systems
that will aim at eliciting the right information from users and facil-
itating communication between end users and developers as well
as among developers. An integration and active participation of
the user community in bug tracking will result in bugs being fixed
faster and more efficiently.

Acknowledgements. Many thanks to Rebecca Aiken, Juliane Degner,
Christian Lindig, Alan Mycroft, and Andreas Zeller for valuable feedback
on earlier revisions of this paper. Silvia Breu was supported by an Eclipse
Innovation Award. Thomas Zimmermann was supported by a start-up grant
from the University of Calgary.

9. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In

ICSE ’06: Proceedings of the 28th International Conference on
Software Engineering, pages 361–370, 2006.

[2] J. Aranda and G. Venolia. The secret life of bugs: Going past the
errors and omissions in software repositories. In ICSE ’09:
Proceedings of the 31st International Conference on Software
Engineering, 2009. to appear.

[3] I. Barker. What is information architecture? KM Column, available
at http://www.steptwo.com.au, April 2005.

[4] V. R. Basili, F. Shull, and F. Lanubile. Building knowledge through
families of experiments. IEEE Trans. Software Eng., 25(4):456–473,
1999.

[5] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann. Quality of bug reports in Eclipse. In eclipse ’07:

Proceedings of the 2007 OOPSLA workshop on eclipse technology
eXchange, pages 21–25, 2007.

[6] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann. What makes a good bug report? In SIGSOFT
’08/FSE-16: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008.

[7] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate
bug reports considered harmful... really? In ICSM ’08: Proceedings
of the 24th IEEE International Conference on Software Maintenance,
September 2008.

[8] Eclipse project homepage. http://www.eclipse.org.
[9] A. Erdem, W. L. Johnson, and S. Marsella. Task oriented software

understanding. In ASE ’98: Proceedings of the 13th IEEE
International Conference on Automated Software Engineering, page
230, 1998.

[10] C. A. Halverson, J. B. Ellis, C. Danis, and W. A. Kellogg. Designing
task visualizations to support the coordination of work in software
development. In CSCW ’06: Proceedings of the 2006 20th
Anniversary Conference on Computer Supported Cooperative Work,
pages 39–48, 2006.

[11] J. D. Herbsleb and E. Kuwana. Preserving knowledge in design
projects: what designers need to know. In CHI ’93: Proceedings of
the INTERACT ’93 and CHI ’93 Conference on Human Factors in
Computing Systems, pages 7–14, 1993.

[12] N. Jalbert and W. Weimer. Automated duplicate detection for bug
tracking systems. In DSN ’08: Proceedings of the Conference on
Dependable Systems and Networks, 2008.

[13] Joel on Software blog.
http://www.joelonsoftware.com/news/fog0000000162.html.

[14] W. L. Johnson and A. Erdem. Interactive explanation of software
systems. Automated Software Engineering, 4(1):53–75, 1997.

[15] S. Just, R. Premraj, and T. Zimmermann. Towards the next
generation of bug tracking systems. In VL/HCC ’08: Proceedings of
the Visual Languages and Human-Centric Computing, 2008.

[16] A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated
software development teams. In ICSE ’07: Proceedings of the 29th
International Conference on Software Engineering, pages 344–353,
2007.

[17] A. J. Ko, B. A. Myers, and D. H. Chau. A linguistic analysis of how
people describe software problems. In VL/HCC ’06: Proceedings of
the Visual Languages and Human-Centric Computing, pages
127–134, 2006.

[18] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An
exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE Trans.
Software Eng., 32(12):971–987, 2006.

[19] Ø. Langsrud. ANOVA for unbalanced data: Use Type II instead of
Type III sums of squares. Statistics and Computing, 13(2):163–167,
2003.

[20] R Development Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2008. ISBN 3-900051-07-0.

[21] P. C. Rigby, D. M. German, and M.-A. Storey. Open source software
peer review practices: a case study of the apache server. In ICSE ’08:
Proceedings of the 30th international conference on Software
engineering, pages 541–550, New York, NY, USA, 2008. ACM.

[22] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of
duplicate defect reports using natural language processing. In ICSE
’07: Proceedings of the 29th International Conference on Software
Engineering, pages 499–510, 2007.

[23] J. Sillito, G. C. Murphy, and K. D. Volder. Questions programmers
ask during software evolution tasks. In SIGSOFT ’06/FSE-14:
Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 23–34, 2006.

[24] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to
detecting duplicate bug reports using natural language and execution
information. In ICSE ’08: Proceedings of the 30th International
Conference on Software Engineering, pages 461–470, 2008.

10

