
Aspect Mining for Large Systems
— Demo —

Silvia Breu
University of Cambridge

Computer Laboratory
Cambridge, UK
silvia@ieee.org

Thomas Zimmermann
Saarland University

Dept. of Computer Science
Saarbr̈ucken, Germany

tz@acm.org

Christian Lindig
Saarland University

Dept. of Computer Science
Saarbr̈ucken, Germany
lindig@cs.uni-sb.de

Abstract
The Eclipse pluginHAM identifies potential aspects in large pro-
grams. It analyzes the program’s history and obtains sets of func-
tion calls that are likely to be cross-cutting. Later during program-
ming, HAM informs the programmer when she is about to extend
or change such a problematic concern.

Categories and Subject DescriptorsD.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restructuring,
reverse engineering, and reengineering

General Terms Algorithms, Measurement, Documentation, Per-
formance, Design, Experimentation,

Keywords Aspect Mining, Aspect-Oriented Programming, CVS,
Eclipse, Formal Concept Analysis, Java, Mining Version Archives

1. Motivation
As a program evolves it is easy to overlook that certain function-
ality is not or no longer properly encapsulated but scattered over
many methods. We are working on an Eclipse plug-in calledHAM
that will identify such cross-cutting concerns and will inform the
programmer unobtrusively when she is about to add more such
functionality. She might now go on as planned, or think about in-
troducing an abstraction to encapsulate this functionality properly.

Our plug-in will work as follows: Imagine that you are working
on some program code in Eclipse, inserting calls to a method
lock() as well as to a methodunlock(). Once you inserted both
calls, they are marked by a light bulb as a cross-cutting concern.
Why? A click on the bulb will reveal a view of all code locations
that call both methods. This indicates that calls tolock() and
unlock() are quite frequent. They might be better encapsulated
by an object that acquires the lock and receives the action to be
performed. These locations are obtained from the current version
of the source code; however, the information thatlock() and
unlock() are cross-cutting is mined from historic data.

For its decisions,HAM preprocesses the program’sCVSarchive.
Next, it applies formal concept analysis to additions of method
calls [2]. As a result we obtain sets of methods that were fre-
quently added together (likelock() andunlock()) and are spread
throughout the source code. The presentation will demonstrate a
prototype ofHAM on large open-source projects and will include
an overview of the techniques that make it scale so well [1].

Copyright is held by the author/owner(s).

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

2. HAM Plugin Description
So far we have implemented a prototype ofHAM that identifies
cross-cutting concerns fromCVS archives. The integration into the
user interface of Eclipse will be our future work.

Figure 1 shows a screenshot when analysing ArgoUML for
cross-cutting concerns. In the left pane(A), the view ”Aspect
Candidates”lists all transactions of theCVS repository for which
we found aspect candidates. For the transaction on April 4 2004
HAM finds five candidates:illegalArgument(1) (for which
a call was inserted into 45 locations),illegalArgument(2)
(101 locations),illegalArgumentObject(1) (75 locations),
illegalArgumentBoolean(1) (27 locations), andillegal-
ArgumentCollection(1) (72 locations).

Double clicking a transaction opens the corresponding lattice
in view ”Concept Lattice” (B) on the lower right hand side. This
view allows to explore the relationship between candidates. The
middle layer of five nodes represent the five aspect candidates that
we found in this particular transaction. In this case, there is no path
from the top to the bottom node that visits two aspect candidates.
Thus the locations of the candidates are disjoint and unlikely to
interfer.

Double clicking an aspect candidate (in any view) opens the
”Search” view (C) of Eclipse in the lower left pane. This view
lists all locations where a candidate was inserted. In our example,
illegalArgumentBoolean was called in 27 location—among
them equalsPseudostateKind. We can now inspect the code
in the editor on the upper right hand side(D) and verify that the
candidate is actually cross-cutting.

3. Contributions
We are the first to leverage version history to mine aspect can-
didates. The underlying hypothesis and motivation is that cross-
cutting concerns may emerge over time. Our work shows that ver-
sion archives are indeed useful for aspect mining.

HAM adds a new dimension to aspect mining.Previous ap-
proaches considered only a particular version of a program. Our
approach uses project history as additional input. This enables a
new view on the evolution of cross-cutting concerns.

HAM scales and is platform independent.HAM is the first
aspect mining approach that scales to industrial-sized projects like
Eclipse. Furthermore, it recognises cross-cutting concerns across
code for different platforms.

HAM comes with high precision.We thoroughly evaluated 405
aspect candidates returned byHAM [1]. The precision increases
with the project size and history, for Eclipse up to 90% for the
top-10 candidates. For small projects,HAM suffers from the much
fewer data available, resulting in lower precision (about 60%).



(A)

(B)

(C)

(D)

Figure 1. TheHAM plugin. TheAspect Candidatesview (A) lists cross-cutting concerns that can be investigated with other views (B,C,D).

4. Biographies

Silvia Breu graduated with a diploma degree
in Computer Science, Math, and Applied Foreign
Languages from the University of Passau in 2004,
having done part of her studies at the Univer-
sity of Edinburgh. During the summer of 2004
she was a research intern at the NASA Ames Re-
search Center within the Automated Software Engineering Group.
With her work on dynamic aspect mining, she won theErnst Den-
ert Software Engineering Awardin 2004, which is an award for the
best MSc thesis in Germany. Before starting her PhD in 2006 at the
University of Cambridge, supported by a scholarship from the Bill
& Melinda Gates Foundation, Silvia worked as a researcher at the
Software Engineering Chair at Saarland University. Her research
interests include programming languages as well as program anal-
ysis such as slicing and aspect mining in order to support program
understanding, validation and verification as well as debugging.

Tom Zimmermann received his diploma degree
in Computer Science from the University of Pas-
sau in 2004. He is currently a PhD student at the
Saarland University in Saarbrücken, supported
by a scholarship from the DFG research training
group onQuality Guarantees for Computer Sys-
tems. Tom was among the first to mine version archives: he built
the eROSE tool, which helps developers navigating through source
code. eROSE leverages the change history of projects and learns
recommendations such asProgrammers who changed function f()

also changed function g().Besides supporting developers, Tom’s
research interests are in software evolution, program analysis, and
data mining.

Christian Lindig received a diploma degree in
Computer Science from the Technical University
of Braunschweig in 1993, followed by a PhD in
Computer Science in 1999. After working at Har-
vard University he joined Saarland University in
2003 where he is currently a researcher at the
Software Engineering Chair. His research interests cover the en-
gineering of compilers and using compiler technology for bug lo-
calization. He also developed efficient algorithms and implemen-
tations for formal concept analysis and pioneered their application
in software engineering. Christian is the co-author of the Quick
C-- compiler for the portable assembly language C--, developed a
Burg-style code generator for ML, and proposed a new architecture
for implementing calling conventions in compilers. His automatic
testing tool Quest routinely finds bugs in commercial C compilers.
Recently he started to explore formal concept analysis as a tool to
mine aspects and usage patterns from programs.

References
[1] S. Breu and T. Zimmermann. Mining Aspects from Version History.

In 21st IEEE/ACM International Conference on Automated Software
Engineering (ASE), Tokyo, Japan, September 2006.

[2] S. Breu and T. Zimmermann and C. Lindig. Mining Eclipse for
Cross-Cutting Concerns. InProc. Intl. Workshop on Mining Software
Repositories (MSR), Shanghai, China, May 2006.


