
Information Needs in Bug Reports:
Improving Cooperation Between Developers and Users

Silvia Breu*
silvia.breu@comlab.ox.ac.uk

Rahul Premraj‡
rpremraj@cs.vu.nl

Jonathan Sillito+

sillito@ucalgary.ca
Thomas Zimmermann+¶

tz@acm.org (contact author)

* Computing Laboratory, University of Oxford, UK
+ University of Calgary, Canada

‡VU University Amsterdam, The Netherlands
¶Microsoft Research, Redmond, USA

ABSTRACT
For many software projects, bug tracking systems play a
central role in supporting collaboration between the devel-
opers and the users of the software. To better understand
this collaboration and how tool support can be improved, we
have quantitatively and qualitatively analysed the questions
asked in a sample of 600 bug reports from the MOZILLA and
ECLIPSE projects. We categorised the questions and analysed
response rates and times by category and project. Our re-
sults show that the role of users goes beyond simply report-
ing bugs: their active and ongoing participation is important
for making progress on the bugs they report. Based on the
results, we suggest four ways in which bug tracking systems
can be improved.

Author Keywords: Bug Reports, Information Needs, Ques-
tions, Response Rate, Response Time, Question Time

ACM Classification Keywords:
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms: Human Factors, Management

1. INTRODUCTION
In open-source projects, bug tracking systems are an impor-
tant part of how teams (such as the ECLIPSE and MOZILLA
teams) interact with their user communities. As a conse-
quence, users can be involved in the bug fixing process: they
not only submit the original bug reports but can also partic-
ipate in discussions of how to fix bugs. Thus they help to
make decisions about the future direction of a product. To
a large extent, bug tracking systems serve as the medium
through which developers and users interact and communi-
cate. However, friction arises when fixing bugs: develop-
ers get annoyed and impatient over incomplete bug reports
and users are frustrated when their bugs are not immediately
fixed [5, 15].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSCW 2010, February 6–10, 2010, Savannah, Georgia, USA.
Copyright 2010 ACM 978-1-60558-795-0/10/02...$10.00.

In order to better understand such communities and how
they collaborate and interact with each other, we analysed
600 bug reports from the ECLIPSE and MOZILLA projects. In
particular, we focused on what kind of questions are asked
in bug reports and their answers. Such questions implic-
itly describe information needs for bug fixing (Section 3).
We then analysed different aspects, such as when are ques-
tions asked (question time), how often are they answered (re-
sponse rate), and how much time takes it to receive an an-
swer (response time). For each aspect, we reveal several pat-
terns that help to guide designing better bug tracking tools.

Earlier work on information needs in software development
focused on software maintenance tasks [18,27] and the day-
to-day needs of collocated development teams [16]. In con-
trast, our study focuses specifically on bug tracking and con-
siders the entire life cycle of bug reports, which involves
many different tasks, such as triaging, debugging, fixing,
testing, and reviewing code. We also consider users who
report bugs in our study. More specifically, we make the
following contributions:

1. Catalogue of frequently asked questions in bug reports.
We identified a catalogue of questions posed by both users
and developers in bug reports, consisting of eight cate-
gories and 40 sub-categories, derived from 947 questions
in 600 bug reports for ECLIPSE and MOZILLA. Most ques-
tions are related to debugging and fixing the bug. Many
questions also request further information or relate to bug
triaging activities (Section 4).

2. Statistical analysis of question time, response rate and
time. For each question, we collected whether and when
it was answered. Questions which discuss corrections are
more likely to be answered. In contrast, answers to triag-
ing and resolution questions take longer. In MOZILLA,
questions addressed to developers are more likely to be
answered than questions addressed to users (Section 5).

3. Qualitative analysis of bug reports. We analysed bug re-
ports with a low response rate or repeated assign-reassign
events. We found that bug reports are fixed faster when
the reporter participates. Reassignment of bugs to other
developers was also an indicator for progress (Section 6).

4. Consequences for bug tracking. Our study has several im-
plications for bug tracking systems, e.g., to become more
community-oriented and explicitly address evolving in-
formation needs (Section 7).

2. RELATED WORK
In this section we compare and contrast our work to previ-
ous research in two areas. First, we consider studies that
investigate the information needs of developers in various
contexts. Information needs of developers in collocated de-
velopment teams were studied by Ko et al. [16]. The au-
thors observed the daily work of developers and noted the
types of information desired—they identified 21 different in-
formation types in the collected data. Sillito et al. [27] ex-
amined the kinds of questions that programmers ask during
change tasks. An extensive collection of 44 different kinds
of questions were identified. Johnson and Erdem [14] exam-
ined questions posted to Usenet newsgroups and categorised
them into three classes: goal-oriented, symptom-oriented,
and system-oriented. Erdem et al. [8] analysed the questions
further along with questions from a literature survey to de-
velop a model of questions that programmers ask. Herbsleb
and Kuwana [11] focused on software designers and inves-
tigated the types of questions that get asked during design
meetings. We are also interested in information needs of
developers, however in the context of developers and users
collaborating around a bug report.

Second, we consider our work in the context of research that
has focused on bug tracking systems. Ko et al. [17] looked at
thousands of bug report titles and identified fields that could
be incorporated into new bug report forms. Aranda et al. [2]
reported on a field study of coordination activities around
bug fixing at Microsoft. They identified common bug fix-
ing coordination patterns and provided implications for co-
ordination in software development. Bettenburg et al. [5]
conducted a survey on developers and users from APACHE,
ECLIPSE, and MOZILLA to determine which information con-
tents, in their opinions, comprise good quality bug reports.
Their CUEZILLA tool leveraged the responses from the survey
to measure quality of bug reports in real-time and provide
immediate feedback to reporters on enhancing information
quality. Just et al. [15] analysed the responses from the same
survey to suggest improvements to make bug tracking sys-
tems easier to use and facilitate submission of better quality
bug reports. Lastly, another study by Bettenburg et al. [6]
argued for merging of duplicate bug reports along with the
originals to make more unique information about the bug
available to developers. In contrast, our work focuses on the
interaction between developers and users with the goal of
improving tool support for this interaction.

Sandusky used primarily qualitative methods on MOZILLA
bug reports to describe phenomena such as question and
answer sequences [25]. Sandusky and Gasser focused on
the role of negotiation in software problem management and
how it affects the organisation of information [26]. Ripoche
and Sansonnet analysed speech acts across the entire Mozilla
Bugzilla corpus computational linguistics [23].

3. DATA COLLECTION
For our study, we analysed the bug repositories of two large
open-source projects, ECLIPSE1 and MOZILLA2. We selected
these projects because both of them have many developers
and users and a long development history.

Combined, both projects have over 600 000 bug reports,
which are too many to be analysed manually. Therefore,
we used simple random sampling on all bug reports to select
300 bug reports for each project. We then manually identi-
fied questions in the 600 bug reports. Next we grouped the
extracted 947 questions into categories using a card sort.

Collecting Questions
We extracted questions from bug reports by carefully read-
ing each sampled bug report. Questions come in different
forms, with different intentions, and not all of them describe
information needs. Therefore, we used the following selec-
tion criteria: a question relevant for our study is any text that
asks for information or feedback that is related to the bug or
fix. In particular, this means that we excluded from our anal-
ysis: requests for action (unless they asked for confirmation),
rhetorical questions (no response expected), and questions
unrelated to the bug or to fixing it.

Here are a few examples to illustrate what we consider to be
a question.

4 “Which operating system are you using?” → asks for information
related to a bug

4 “Why the tabs instead of putting this on the first page of the wizard?”
→ ask for the reasoning behind a proposed fix

4 “Would you mind giving the changes a once-over after I make them?”
→ asks a developer for feedback on changes

In contrast, here are examples of text that we did not consider
to be questions for the purpose of our study.

8 “There is no mozilla bug here, and were we to cater to the obvious bugs
of Delphi, then what happens when the next implementer comes along
who also misinterpreted the spec and thought the header was manda-
tory?”→ rhetorical question, no information seeking

8 “Can you commit it to SUNBIRD 0 3 BRANCH (and the other
branches/trunk) before todays (sic) nightly build is produced?”
→ request for action, no answer expected

8 “What is a child entry [when defining access rules]?” → unrelated to
the bug and its fix3

For each identified question, we recorded the following in-
formation on an index card:

• the bug id of the bug report;
• the number of the comment that contains the question (the

initial bug description has the number 0);
• the actual question; if needed we added the context to

make questions self-contained;
• whether the question is addressed at developers, users, or

both (i.e., who is expected to respond);
1ECLIPSE is a popular integrated development environment for
Java and other programming languages. As of July 6, 2008, the bug
database for ECLIPSE contained 238 541 bug reports (=our sample
frame), dating back to October 2001. http://www.eclipse.org
2MOZILLA is a suite of programs for web browsing and collabora-
tion (such as email client, calendar, and address book). As of July
7, 2008, its bug database contained 435 392 bug reports (=sample
frame), dating back to April 1998. http://www.mozilla.org/
3The question is not related to a bug or fix because a user asked in a
bug report how to use the new ECLIPSE feature “type access rule”.

• whether the question is regarding the bug, fix, or both;
• and responses, if any, as a list of comment numbers (we

only considered responses within the same report).

After collecting all questions on index cards, we entered all
data into a database and added author and time information
(via the bug id and comment numbers). With author infor-
mation, we can distinguish between different roles such as
developer, submitter, and assignee. With time information
and the comment numbers for questions and responses, we
can compute response times.

Card Sort
To group questions into categories, we conducted a card
sort. Card sorting is an inexpensive sorting technique that
is widely used in information architecture to create mental
models and derive taxonomies from input data [3]. In our
case it helps to organise the questions into hierarchies to
deduce a higher level of abstraction and identify common
themes. A card sort involves three phases:

1. In the preparation phase, participants of the card sort are
selected and the cards are created.

2. In the execution phase, cards are sorted into meaningful
groups with a descriptive title.

3. In the analysis phase, abstract hierarchies are formed in
order to deduce general categories and themes.

We applied an open card sort, meaning there were no prede-
fined groups, instead the groups emerged and evolved during
the sorting process. In contrast, a closed card sort has prede-
fined groups and is typically applied when themes are known
in advance, which was not the case for our study.

All of the cards were created by the first author of this pa-
per. Throughout our further analysis three researchers (first,
third, and fourth author) were involved in iteratively devel-
oping categories and assigning cards to categories so as to
strengthen the validity of the result. The first author played
a special role of ensuring that the context of each question
was considered appropriately in the categorization, and cre-
ating the initial categories. To ensure the integrity of our
categories, the cards were sorted by the first author several
times to identify initial themes. Next, all researchers re-
viewed and agreed on the final set of categories as presented
in the next section. We measured inter-rater agreement for
the first author’s categorization on a simple random sample
of 100 cards with a closed card sort and two additional raters
(third and fourth author); the Fleiss’ Kappa [9] value among
the three raters was 0.655, which can be considered a sub-
stantial agreement [19].

Threats to Validity (Card Sort)
Bystanders of a communication might misplace its context
as they may lack full understanding of its nature and back-
ground. This threat applied to us, too, when we identified
questions and responses in our sample of bug reports. Open
card sorts are also inherently subjective because different
themes are likely to emerge from independent card sorts con-
ducted by the same or different people.

4. CATALOGUE OF QUESTIONS
After we finished the card sort, we had 40 groups, which
we clustered into eight categories.4 We now describe each
category and provide examples of questions. The numbers
in parentheses indicate how many times questions in each
group were asked.

Category #1: Missing Information
Often, submitted bug reports are incomplete and miss infor-
mation relevant to reproduce a bug. In fact, this is one of
the most frequent problems that developers face with bug
reports [5], and is confirmed by our study: missing infor-
mation is the third-largest category. To better understand a
bug before starting to debug, developers request information
such as steps to reproduce, build numbers, OS, test cases,
examples, program output, and screenshots.

→ in total 143 questions, or 15.1% of all questions.

steps to reproduce: (16×) “How do I actually reproduce this border prob-
lem?”, “Can you give a description of when this happens to you?”

environment: build, OS, installed software (51×) “Can you provide a build
number?”, “Which operating system?”, “Do you have flash installed?”

tests and examples (16×) “Could you attach test suite or strip it down to a
sufficient example?”, “What are you trying? Get some real example of
your code here. . . ”

program output: log file, talkback, stack trace (32×) “This bug needs a
stacktrace (sic).”, “Talkback ID from crash?”

miscellaneous information requests (28×) “Could you provide a screen-
shot?”, “Where do you crash in profile manager?”

Category #2: Clarification
Often developers have all relevant information about a fail-
ure, but need to clarify certain aspects, which they did not
fully understand. The questions in this category relate to
the bug in general, and not to possible corrections, which
are part of a separate category (correction). Clarification
questions can be specific or very general. Often developers
are even clueless what problem is reported in a bug (“don’t
understand, please explain”). Some questions come from
users who want to know if they have been helpful or whether
additional information is needed.

→ in total 114 questions, or 12.0% of all questions.

asking something specific (16×) “How do you select a different input
method?”, “Where’s a java-applet on this page?”

do you mean? (24×) “Do you mean in the ’browser’ tab?”, “Are you say-
ing you cannot download a file?”

don’t understand, please explain (28×) “I am not clear on what the remain
problem is. Can someone explain it to me?”, “I don’t understand why
you would want to export web app libraries?”

questions about provided data (12×) “Was the original dump a ’copy’ on
the call stack?”, “What do the port numbers refer to?”

user regarding his helpfulness (5×) “[Developer,] Is there anything else I
can do to help troubleshoot this problem?”, “Were you able to reproduce
using the steps [I, the reporter,] described in comment #7?”

miscellaneous clarification questions (29×) “Which part do I need to ver-
ify for this bug?”, “What should the path have been?”

4Out of the 947 questions, seven did not fit any of the identified
groups and were ignored for the remaining analysis.

Category #3: Triaging
Bug triage is the process of deciding which bugs should be
fixed and assigning them to developers. It includes the de-
cision whether a behaviour is actually incorrect (“bug or
feature?”). Often bugs are submitted to wrong components
or even projects, e.g., to MOZILLA instead of JBoss (“not
our bug?”). Sometimes two different bugs are described
within the same report or a new bug emerges during bug
fixing (“separate bug report?”). Most questions in this cat-
egory, however, are about bug duplicates and who should
fix a bug, both of which have been extensively covered by
research [1, 6, 12, 24, 28].

→ in total 94 questions, or 9.9% of all questions.

duplicate or not? (35×) “Has this been investigated previously?”, “Dupe
of bug 114853?”

who could fix it? (10×) “Who gets the Solaris problem?”, “Anybody want
to own this bug?”

could you fix it? (14×) “Can you do the fix as suggested?”, “Could you
take care of this?”

bug or feature? (5×) “Is that intended or should it be fixed?”, “Is this nor-
mal or a bug?”

shall we fix it? (9×) “Is this little nit worth picking?”, “Not sure whether
we care enough to try to change this?”

separate bug report? (7×) “Should this be written up as a separate ’en-
hancement’ bug?”, “Shall we open a new bug or rename the summary of
this one?”

correct component? (5×) “Is dom the correct component?”, “Can you ver-
ify that this is a reconciler problem?”

not our bug? (9×) “Should I move this bug report to JCore-code assist?”,
“Is this a JBoss bug that needs reporting?”

Category #4: Debugging
This category contains questions related to the process of
debugging. It is the second-largest category, which indicates
that debugging is a highly collaborative activity, involving
both developers and users alike. Ko et al. made a similar ob-
servation about the collaborative nature of debugging [16].
In general, developers ask questions about behaviour and
state of a program, and about code pieces. Sometimes they
require input from users and ask them to rerun programs
with different settings.

→ in total 176 questions, or 18.6% of all questions.

questions about the behaviour of a program (65×) “Does this exception
happen consistently for you?”

questions about state, setting (18×) “Do you have autobuild on?”

questions that require action and/or rerun (42×) “Can you see what hap-
pens with a new profile?”

questions about code (25×) “Could it be because the user name field has
“type = input” rather than “type = text”?”

questions that ask why or why not (17×) “Why do all the radio buttons
have two gray dots now?”

miscellaneous debugging questions (9×) “Any further comments or
ideas?”

Category #5: Correction
This category contains questions that discuss how to correct
a bug. It is by far the largest category, which indicates that

once developers found the cause of a bug, they discuss so-
lutions and alternatives before they fix the bug. The ques-
tions in the first group suggestion & feedback requests are
asked before any changes are made and discuss possible so-
lutions. The questions in understanding fixes relate to an im-
plemented solution, often a patch. The last group are ques-
tions related to code reviews, where developers ask about or
get feedback on their solution. Reviewing code is consid-
ered an important quality assurance mechanism in the open
source community [22].

→ in total 240 questions, or 25.3% of all questions.

suggestion & feedback requests (80×) “Should we just remove the get-
BuiltIn check StreamHandlerFactory?”, “Do we want to change all
’click’ to ’choose’?”

understanding fixes (87×) “Maybe I’m not understanding this statement
but you could use a ConverterProvider as an application-wide single-
ton (for your own code) but the library would not include the concept of
an application-wide singleton. Correct?”

code reviews (73×) “How about a review when you get a chance?”, “Can
you rewrite the patch for the tip?”

Category #6: Status Enquiry
This category contains all questions that relate to the status
(including resolution and priority) of a bug or its fix. Most
of the questions are about the progress in general or whether
a fix will make a certain version or build of the program. We
also included questions about possible workarounds in the
category because bugs with workarounds often have a lower
priority.

→ in total 80 questions, or 8.4% of all questions.

questions about progress (28×) “Any progress on this one?”

questions about target version (19×) “Will this make M13? M14?”

questions about workaround (7×) “Can we see about recommending peo-
ple upgrade viewpoint if they continue to crash with this?”

questions about related bugs (9×) “Now that bug 128586 is fixed, is this
bug fixed, too?”

questions about resolution and priority (11×) “IF (sic) this is fixed on
trunk, how come it’s not marked RESOLVED-FIXED?”

reminders (6×) “Care to actually answer the question I asked?”

Category #7: Resolution
This category contains questions that ask whether a bug is
resolved or whether it is still a problem. Typically, these
questions are asked after workarounds have been mentioned,
after new builds, or after longer periods of inactivity in the
bug report. The latter kind of questions ensures that de-
velopers only spend their time on bugs that still matter to
users. If users do not respond to such questions, the bugs
get closed. The MOZILLA project even automated this pro-
cess and posts automated messages to bug reports. How-
ever, closing bugs automatically after inactivity is not very
popular among users [15].

→ in total 68 questions, or 7.2% of all questions.

after workaround (7×) “Does downgrading to 0.9.8 solve the problem?”

after new build (35×) “Do you still see the problem using FF2 or trunk?”

after inactivity (17×) “Has this been solved for any of you?”

automated message after inactivity (9×) “This is an automated message,
with ID ’auto-resolve01’. . . ”

Category #8: Process
This category contains questions about administrative tasks,
best practices, and procedures.

→ in total 25 questions, or 2.6% of all questions.

administration (11×) “Do I have the authority to review code?”, “Can you
give me build engineer status/full shell access to download.eclipse.org?”

procedures (14×) “How should we track these kinds of issues?”, “What
should I do to get this through the process?”

5. STATISTICAL ANALYSIS
For each question and response (if available), we extracted
time information from the bug database using the recorded
bug and comment numbers (see Section 3). This allowed
us to investigate the following aspects (correspond to depen-
dent variables).5

• Question time. When are questions asked in the life cycle
of a bug report?

Out of the 940 questions, 11.3% were asked within one
hour and 35.9% within a day after submission of the bug
report (see Figure 1).

Considering only the 773 questions in resolved bug re-
ports, the majority of questions is asked in the first half of
the bugs’ lifetimes (65.8%).

• Response rate. How many questions get answered?

Out of the 940 questions, 636 were responded to
(67.66%). Note that this number considers the presence
of a response only, it does not assess the quality of re-
sponses.

• Response time. How long does it take to get a response?

Of the 636 questions with responses, 9.8% received re-
sponses within 10 minutes, 34.2% within the hour, and
79.4% within the day (see Figure 1).

We analysed the influence of the following factors (corre-
spond to independent variables):

• Category — the card sort category to which the question
belongs (for the eight categories, see Section 4).

• Addressee — question addressed at developer or user; for
the analysis, we ignored questions which were addressed
to both.

• Topic — question related to the bug or fix; for the analysis,
we ignored questions that were related to both.

• Project — question was asked in ECLIPSE or MOZILLA.

Experimental Set-Up
We quantitatively investigated the effect of the above four
factors on question time, response rate, and response time
by adopting the following experimental set-up throughout
our analysis:

5For the statistical analysis, we used the R statistical software [21]
with the car package for the Anova tests.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Question time all 940 questions

(logarithmic scale)
1 sec 1 min 10 min 1 day 1 month 1 year

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Question time (normalized by bug lifetime) 773 questions in resolved bugs

Early (after reporting) Late (close to resolution)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time 636 questions with responses

1 min 10 min 1 hour 1 day 1 month 1 year
(logarithmic scale)

Figure 1. Distribution of question and response time.

Step 1. Find out which factors exert influence
We used a statistical modelling technique called Analysis of
Variance (ANOVA) to measure which factors and interactions
of factors influence the dependent variable. For example, in
a three-way ANOVA with factors A, B, and C, the model tests
for the effects of A, B, and C on the dependent variable, and
also for the effects of the interaction terms AB, AC, BC, and
ABC. We preferred Type II over Type III sum of squares for
ANOVA because Type-II sums obey the principle of marginal-
ity and are better suited for unbalanced data [20].

For our analysis, we built two ANOVA models for each depen-
dent variable. The first model included only category as the
independent variable, while the second model included ad-
dressee, topic, and project. This separation was made to re-
duce chances of false negative errors (i.e., accepting the null
hypothesis when it is false), which is a plausible effect of the
high number of levels (discrete values taken by the factor) in
the category factor. Factors (and interaction terms) found
to have significant effects on the dependent variable are de-
termined by observing the corresponding p-value which is a
measure of arriving at the result purely by chance. Typically,
a threshold value of p ≤ .05 is considered to treat the fac-
tor significant and worthy of further analysis. Unless noted
otherwise all results are significant at this level.

Step 2. Confirm and assess the effect of factors
ANOVA is followed by post-hoc analyses on statistically sig-
nificant factors and interaction terms. In contrast to ANOVA,
which only checks whether a factor significantly influences
the dependent variable, post-hoc analyses investigate which
specific levels of the factor are different from the others.
For example, if an ANOVA yields that category influences re-
sponse time, the post-hoc analysis investigates which of the
eight levels of category actually have influence on response

times and how. The choice of statistical tests for post-hoc
analysis depends on the data. We used t-tests for question
times and response times because their values are continu-
ous. For response rates we used Chi-squared tests because
they are based on dichotomous data (responded to or not).

In cases where the category factor was shown as significant
by ANOVA, the post-hoc analyses were conducted by compar-
ing each of the eight categories to the remaining seven com-
bined as opposed to comparing them pairwisely. The moti-
vation to do so was firstly our interest to know the specific
categories for which the dependent variable differed from all
others. Secondly, increasing numbers of statistical tests pro-
gressively increase the chances of false positive errors (i.e.,
rejecting the null hypothesis when it is true). This likeli-
hood is reduced by applying Bonferroni correction, which is
an adjustment to the threshold p-value by dividing it by the
number of tests. Since we conducted eight tests to compare
the categories, we lowered the threshold for significance to
p ≤ .00625. In the analysis below, we report whether the
specific category is significant with and without Bonferroni
correction. It is important to note that the categories no
longer significant with Bonferroni correction are still impor-
tant since they influence the dependent variable, but their
effect must be interpreted with caution.

Question Time
Analysing question time helps us understand the informa-
tion needs of developers at different stages of the bug fixing
process. We computed question time as the ratio of the time
difference between the comment that contained the question
and when the bug was reported to the lifetime of the bug
report. The resulting value is normalised and ranges from
[0 – 1]; for the sake of simplicity, we refer to it as question
time throughout this remainder of the paper. The two ANOVA
models yielded that category (p < .001), topic (p < .001)
and project (p < .05) influence question time, but addressee
has no significant effect.

The ANOVA result for category suggests that information
needs of developers change during the lifetime of bug re-
ports. This is also supported by Figure 2, which plots the
distribution of question times across different categories. To
investigate specifically which category of questions were
timed differently from the others, we performed the post-
hoc analysis using t-tests. We found that questions related
to missing information and debugging are asked early on in
the lifetime (both p < .001), suggesting that soon after the
bug is reported, developers focus on gathering all relevant
information related to the bug and to narrow candidate fix
locations. On the contrary, questions related to correction,
status enquiry, and resolution are asked later on in the life-
times of bug reports (all three p < .001). Note that all cate-
gories, with an exception of status enquiry, were significant
even after Bonferroni correction.

A noteworthy observation in Figure 2 is that question times
for all categories range across the full lifetimes of bug re-
ports; especially notable so for bug triaging, which is com-
monly believed to be undertaken soon after the bug has been

Process

Resolution

Status Enquiry

Correction

Debugging

Triaging

Clarification

Missing Information

0.0 0.2 0.4 0.6 0.8 1.0

Question Time by Category

Early Question Time Late

Figure 2. Boxplot of question time by category.

reported. Instead, it appears to be an on-going activity that
does not necessarily halt after the bug report has been as-
signed to a developer (see Section 6 for examples).

Topic showed also a significant effect on question time in the
ANOVA analysis. The post-hoc analysis confirmed this result
and showed statistically significant differences in the mean
values for the two levels of topic (p < .001). Questions
related to fixes were asked later in the bugs’ lifetimes than
questions related to bugs. This indicates that the focus of
questions shifts from collecting information related to the
bug to how the bug should be fixed.

Project also showed a significant effect in the ANOVA anal-
ysis; however, the t-test could not confirm any significant
effect of project on question times.

Response Rates
As an initial exploration of the challenges developers face
in satisfying their information needs, we examined the ef-
fect that our independent variables (question category, ad-
dressee, topic and project) had on how likely questions were
to be responded to. The ANOVA models showed that cate-
gory of questions has a significant effect on response rates
(p < .001). ANOVA also showed two interaction terms to
be significant, namely project:addressee (p < .001) and
topic:addressee (p < .05). Although the main factors
project, addressee, and topic were also significant, they need
no further analysis since they will be covered by the post-hoc
analysis on the interaction terms.6

6Post-hoc analysis on significant interaction terms is conducted by
keeping the level of one factor constant and comparing the depen-
dent variable by different levels in the other factor. After repeating
this for all levels in the first factor, levels in the second factor are
now kept constant to examine differences in the first factor.

Table 1. Response rates for questions by category.

Replied Not replied Total Response Rate (%)

Missing information 89 54 143 62.24
Clarification 72 42 114 63.16
Triaging 59 35 93 62.77
Debugging 117 59 176 66.48
Correction 189 51 240 78.75
Status Enquiry 56 24 80 70.00
Resolution 38 30 68 55.88
Process 16 9 25 64.00

Total 636 304 940 67.66

The result for the category factor indicates that whether a
question is likely to receive a response depends on the type
of question that has been posed (see also Table 1). In the
post-hoc analysis, questions related to correction were more
likely (response rate of 78.8% vs. 64.1%, p < .001) and
questions related to resolution were less likely to receive re-
sponses (56.0% vs. 68.7%; p < .05). Note that of these two
categories, only correction remains statistically significant
after Bonferroni correction.

For the interaction term project:addressee, the post-hoc
analysis revealed that in the MOZILLA project, questions ad-
dressed to developers have a significantly higher response
rate of 72.2% as compared to questions addressed to users
with a response rate of 50.0% (p < .001). In addition
we found that questions addressed to users in the ECLIPSE
project have a higher response rate of 69.3% as compared to
those from MOZILLA with 50.0% (p < .01). No other signif-
icant differences were found for this interaction.

For the interaction term topic:addressee, the post-hoc anal-
ysis showed that developers are more likely to respond to
questions related to fixes than to questions related to bugs
(78.2% vs. 66.4%, significant at p < .01). No other signifi-
cant differences were found for this interaction.

Response Times
Another aspect relevant for the analysis of replies is response
time, i.e., how quickly does the addressee respond to the
question. Delayed replies can slow down progress on bug
reports, eventually bringing some to a standstill. For exam-
ple, a developer may wish to clarify the conditions under
which she can reproduce the bug. Without a response, she is
less likely to make progress on the bug.

Our analysis now focuses on the questions that received re-
sponses. Response time for each question was computed as
the time difference between the comment in which the ques-
tion was posed and the first comment in which it was an-
swered (completeness of answers was disregarded). There-
after, the data was normalised by ranking the response times
to meet the data assumptions for modelling using ANOVA.
The ANOVA models only showed for category a significant
influence on response time (p < .001). This means that re-
sponse time depends mostly upon the type of question.

Our post-hoc analysis on the category factor revealed that

Process

Resolution

Status Enquiry

Correction

Debugging

Triaging

Clarification

Missing Information

Response Time by Category

Response Time (logarithmic scale)

1 min 1 hour 1 day 1 month 1 year

Figure 3. Boxplot of response time by category.

questions related to clarification (p < .05) and process
(p < .05) have lower response times, i.e., are replied to
quickly. In contrast, responses take longer for questions re-
lated to triaging (p < .01) and resolution (p < .05). Of
these four category types, only triaging-related questions
were statistically significant after Bonferroni correction.

Figure 3 plots the response times by category (note that the
plot uses raw response times). There are cases where ques-
tions did not receive a response until after a year, for ex-
ample, it took more than four years to receive a reply for
question “Is this still an issue?” in MOZILLA bug 4633. To
summarise, although a vast number of questions receive re-
sponses quickly, others questions take much longer and and
many go unanswered.

Threats to Validity (Statistical Analysis)
As with any empirical study, it is difficult to draw general
conclusions because any process depends on a large number
of context variables [4]. In our case, we analysed 600 bug
reports from two large open-source projects, namely ECLIPSE
and MOZILLA. We expect that our findings also apply to other
projects. The observations made from the statistical analysis
are based on 600 randomly sampled bug reports that may not
be fully representative of their respective projects. However,
the questions identified from the sample cover a vast spec-
trum of categories that include nearly every aspect of the
bug fixing process. We can hence expect that our findings
are generalisable and reflective of the projects.

6. QUALITATIVE ANALYSIS
In this section, we discuss bug reports with low response
rates and frequent reassignments in more detail. Our anal-
ysis of these reports yielded several insights, however, our
conclusions should be considered preliminary.

Legend

n a comment by commentator n. To the left of comments (space permitting) are the comment numbers.

connects question & answern question(s) related to bug n question(s) related to fix n question(s) related to both

Inactivity is indicated as a number of weeks (2w) or months (2m). For layout convenience, spacing for inactivity is not proportional to the duration.

Questions are aimed at end users (U), developers (D) or both (B).

5 bugs with 27
unanswered questions

The text to the right of comments
indicates the category of questions asked.

A

188142 (M)
1517 days
3 authors

0 1

3

1

2 1

18m

4 1

Clarification

5 1

6 3

32m

D

Status

Status(2)
Correction

2

2

D

D

50151 (M)
218 days
10 authors

0 1

1

2

3 4

4 4

5 5

6 5

7 5

8 5

9 5

4m

11 6

12 5

13

1m

14 8

1m

1w

7

2w

21 10

22 4

10 4

1w

7

9

8

7

4

7 B

2 D

U

3 B

U

Clarification(2)
Missing(3)

Debugging

Clarification
Missing

Clarification

Resolution

87503 (M)
66 days
8 authors

1

3

1

6

1

1

1

3

1

7

7

1

2w

1m

8

4 U

2 D
2 B

4 U

5 U

5 U

7 U

7 U

2

0

1

13

12

9

8

7

19

20

Triaging

Clarification

Missing

Missing

Resolution

Debugging
Missing

Missing

Debugging

99490 (M)
10 days
4 authors

2

0

4

1

8

5

3

1

4

4

2

4

2

1

4

3

U

U

U

U

1w

Missing

Missing

Missing

Missing
Status

242170 (M)
115 days
5 authors

0 1

3 4

1 2

2 3

4m

4 5

U

U
Clarification(2)
Debugging(2)
Triaging
Debugging

26698 (E)
8 days
4 authors

0 1

1

6 4

7 3

8 3

11 3

2

4
D3

4

3 B

1

4 U

SWT

3

Debug

3

4

47618 (E)
4 days
5 authors

1

3

5

4

3

1

5 U

0

4

1

11

8

5

1

1

2 U

1

3 U

3

Build
UI

Debug

Platform

UI

63646 (E)
352 days
6 authors

1w

2w

10m

1m

0

2

7

1

6

3

15

14

17

13

16

2

2

1

1

1

5

1

1

5

5

1

6

1

2

5

Platform

SWT

3

2

5

6

3 U

D

4 D

4 D

95224 (M)
283 days
11 authors

3

5m

4

2

6

5

5

6

7

1

1

6

10

6

10

3

4

5

8

6

7

9

10

13

11

12

16

23

1w

1w

3m

1
D2

1
U11

9

8 D

1

6 U

1

6 U

4

2

5

12

6

2

4 bugs with 24
different assignments

B

To the right of comments, numbers (for
specific commentators) and names (for
component owners) indicate assignments.

Figure 4. Illustration of discussion in nine bug reports.

Low Response Rate
Section 5 quantifies the challenge developers face in getting
their questions answered in a timely fashion. In particular,
32.34% of the questions in our sample were never responded
to, and many more required hours or days before an answer
was provided. To explore this issue further we have looked
more closely at five bug reports that contained many unan-
swered questions. This way we have been able to carry out a
preliminary analysis of 27 unanswered questions in context.

To select the bug reports for this analysis, we considered
all reports with at least five questions and selected the five
reports with the lowest response rates. The discussions con-
tained in these reports are illustrated in part A of Figure 4.
All of these reports come from the MOZILLA project, which
we found to have lower response rates in our sample (65.7%
versus 71.3% for the ECLIPSE project). As shown in the fig-
ure, with the exception of issue 99490, these issues all took
a significant amount of time to address and included long
stretches of time without discussion.

For the MOZILLA project 50.0% of the questions addressed
to users went unanswered, and indeed most of the 27 unan-
swered questions were addressed to users (20 questions) and
are related to the bug rather than the fix (26 questions). For
example, during the discussion of bug 242170, developers
asked the reporter six questions about the bug (four in com-
ment 1 and two in comment 2) none of which were an-

swered. After several months with no response, one of the
developers guessed that the problem had been resolved and
marked it as RESOLVED/WORKSFORME.

Our qualitative analysis suggests that there is an expectation
by developers that users reporting a bug, actively participate
in the discussion of the bug if necessary and our statistical
analysis showed that questions addressed to users appeared
throughout the life cycle of a bug report (see Section 5). A
lack of response by users can result in a sense that reporters
are not doing their part and that their cooperation is essential
for progress to be made. For example, during the discussion
of bug 99490, after several questions (asked in comments
1, 3 and 4) had gone unanswered, in comment 6 the devel-
oper encouraged the reporter to respond and explained that
no work would occur otherwise: “Reporter, please work with
us on this [...] Please comment within the next week or so;
otherwise we may have to resolve this worksforme.” Once
the reporter responded to some of the questions, which hap-
pened in comment 7, the bug was quickly resolved.

The unanswered questions in these five bug reports tended
to be about information that is necessary for proper triaging,
debugging, and especially to reproducing a bug. A lack of
response to such questions is particularly frustrating for de-
velopers because without the ability to reproduce a bug, gen-
erally no progress can be made and developers tend to mark
the bug as RESOLVED/WORKSFORME or let it sit idle. For

example, during the discussion of bug 50151, a developer
asked about the “build number” [comment 13] along with
another question clarifying what the bug is about. There was
no answer to this question and so no progress was made for
one month until a different user added some additional in-
formation (in comment 14).

On the other hand, we also observed that some questions
were superseded or became irrelevant as the discussion pro-
gressed. This is the case for the questions in comments 7,
8, and 9 in the discussion of bug 87503. In comment 7
the commentator asked about what version of MOZILLA the
problem occurred in and then clarified in comment 8 that he
meant “which build”. Commentator 5 suggested that some-
one checks whether or not the latest build, with a particular
patch, still has the problem. The discussion then continued,
but only considering the latest build. In cases like these, the
lack of a response is not indicative of a problem, though this
appears to be the less common case.

Triaging Issues
In Section 5 we noted that triaging-related questions are
posed throughout the life cycle of a bug. We also suggested
that discussion about how to address a bug may influence
who should address it. Related to this, previous work has
identified a bug pattern called the assign/reassign cycle and
hypothesised that such a pattern may indicate a structural
problem in the software or an organisational gap [10].

To further explore assignment and reassignment issues as
they relate to questions asked, we have analysed the ques-
tions asked in four bug reports; three from the ECLIPSE
project and one from the MOZILLA project. To select the bug
reports for this analysis, we considered all reports with at
least three questions and selected the four with the most re-
assignments. In this way we have been able to carry out
a preliminary analysis of 24 assignment decisions (some to
generic component owners, others to individual developers)
in context. The discussions contained in these reports are
illustrated in part B of Figure 4.

An analysis showed that some questions and the reassign-
ments that followed intend to help move the bug towards res-
olution in various ways. The most obvious were questions
aimed at understanding the issue sufficiently in order to get
the assignment correct. For example, during the discussion
of bug 47618, the question asked in comment 6 tried to un-
derstand under what circumstances the bug occured. The an-
swer in comment 7 led directly to the reassignment in com-
ment 8 to the group responsible for the Debug component.

Similarly, there were questions about who was responsible
for a given area and answers to these questions are impor-
tant for appropriately assigning responsibility for the bug.
For example, during the discussion of bug 95224, the bug
was assigned to commentator 5 (see comment 5) because it
was believed that he was the appropriate module owner. In
comment 6 he denied that he was the owner (“when did that
happen?”) and reassigned the bug to a developer who never
participated in the discussion (see comment 7). No further

progress was made until commentator 6 claimed the bug five
months later (see comment 8).

In a few cases a question was asked and simultaneously the
developer who could answer the question (and take the next
steps with the bug) was assigned the bug. This happened
several times during the discussion of bug 26698. In com-
ment 2, the commentator (who was the assignee at the time)
asked a question and reassigned the bug to the group that
could answer it (“moving to Debug for comment”). Af-
ter tying off the ensuing discussion with members of that
group, commentator 3 took the bug back. Once he had fin-
ished his work on the bug, he asked commentator 4 to verify
what he had done and assigned the bug to him (see com-
ment 9). These results suggest that multiple reassignments
are not problematic in all cases and can be a natural part of
the question and answer process.

7. IMPLICATIONS FOR BUG TRACKING
Previous work discussed various shortcomings of today’s
bug tracking systems [15] and proposed several improve-
ments such as interactive feedback systems [5] and alterna-
tive handling of bug duplicates [6]. Based on the results re-
ported in this paper, we suggest four new ways in which bug
tracking systems and practices can be improved.

Evolving information needs. From the analysis of ques-
tion time in Section 5, we learned that the kind of ques-
tions and thus the information needs change over a bug’s
life cycle. In the beginning most questions request miss-
ing information or details for debugging (in order to locate
the source of the bug). Later questions are mostly focused
on the correction of a bug and on status enquiries. A direct
consequence is that bug tracking systems should account
for such evolving information needs. For example, in the
beginning, when more information about a bug is needed,
easy ways to provide screenshots, stack traces, or steps to
reproduce, are important. Later in a bug’s life cycle, such
interfaces can be replaced by interfaces that facilitate dis-
cussing the correction and tracking the bug’s resolution.

Tool support for frequent questions. In our study, some
question categories were very frequent, e.g., review re-
quests or status enquiries (see Section 4). Introducing
tools that help addressing these questions in a timely and
organised manner will streamline bug tracking activities.
As an example consider the request for reviewing a sug-
gested fix. If this is clearly assigned by the bug tracking
system to a developer, e.g., through a separate work item,
a code review is more likely to be completed and is eas-
ier to track. Thus, reviewing bug fixes becomes an active
rather than a passive part, dependent upon the emergence
of a volunteer code reviewer.

Explicit handling and tracking of questions. For the
MOZILLA project 50.0% of the questions addressed to
users went unanswered. We believe that many users
do not understand the jargon used by developers and
require explicit requests, like “please work with us on
this” (see Section 6). A solution for this problem could
be to make the state of the discussion explicit, not just the

state of the bug report. For example, developers could
mark up crucial questions, which the bug tracking system
recognises and puts the bug in a state “answers pending”.
Making this state explicit sends a clear message to
all stake-holders of the bug report. One can take this
even further and collect bugs that are stuck because of
insufficient information on a special dashboard; they
could then be specifically targeted.

Community-based bug tracking. The high number of
unanswered questions in MOZILLA could result from users
who feel their job is done after initially reporting a bug.
This sentiment is heightened by a form design in bug
trackers that emphasises reporting of information rather
than interaction. To overcome this, bug reporting and
tracking should be understood as a social activity within
a community, supported by the bug tracking system. For
example, it could be more of a project portal, which indi-
cates the assigned developer and her recent activities, the
status of a bug, new questions in bug reports, the history
of the reporter, including bugs she had reported previously
and maybe even reputation of reporters.

Joel Spolsky once noted “I’ve always felt that if you can
make it 10% easier to fill in a bug report, you’ll get twice
as many bug reports” in his blog [13]. While usability is of
importance to us, we focus on improvements after the initial
submission of a bug report. Therefore our suggestions are
unlikely to increase the number of reports. Instead, we hope
that our ongoing research will contribute toward the devel-
opment of social and interactive bug tracking systems that
address the needs of users and developers alike. Our long
term aim is to increase the percentage of fixed bug reports.

8. CONCLUSIONS
Bug tracking systems are an important part of how teams in
open source interact with their user communities. This in-
teraction goes beyond users simply submitting bugs. Many
follow-up questions are posed to the reporters of bugs and
often, if a reporter does not play an active role in the dis-
cussion of the bug, little progress is made. Our results high-
light the importance of effectively and efficiently engaging
the user community in bug fixing activities, and keeping
them up-to-date about the status of a bug. We believe that
our results will help to form the design of new bug tracking
systems that will aim at eliciting the right information from
users and facilitating communication between end users and
developers as well as among developers. An integration and
active participation of users in bug tracking will result in
bugs being fixed faster and more efficiently.

All cards, the categorization, and R scripts to replicate our
study are available as a technical report [7].

Acknowledgements.
Many thanks to Rebecca Aiken, Juliane Degner, Christian
Lindig, Alan Mycroft, and Andreas Zeller, as well as the
anonymous reviewers for valuable feedback on earlier revi-
sions of this paper. Silvia Breu was supported by an Eclipse
Innovation Award. Thomas Zimmermann was supported by
a start-up grant from the University of Calgary.

9. REFERENCES
1. J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In

ICSE ’06, pages 361–370, 2006.
2. J. Aranda and G. Venolia. The secret life of bugs: Going past the

errors and omissions in software repositories. In ICSE ’09, pages
298–308, 2009.

3. I. Barker. What is information architecture? KM Column, available at
http://www.steptwo.com.au, April 2005.

4. V. R. Basili, F. Shull, and F. Lanubile. Building knowledge through
families of experiments. IEEE Trans. Software Eng., 25(4):456–473,
1999.

5. N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann. What makes a good bug report? In SIGSOFT
’08/FSE-16, pages 308–318, 2008.

6. N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate
bug reports considered harmful... really? In ICSM ’08, pages
337–345, September 2008.

7. S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Appendix to
Information Needs in Bug Reports Technical Report 2009-945-24,
Dept. of Computer Science. University of Calgary, October 2009.

8. A. Erdem, W. L. Johnson, and S. Marsella. Task oriented software
understanding. In ASE ’98, pages 230–239, 1998.

9. J. L. Fleiss. Measuring nominal scale agreement among many raters.
Psychological Bulletin, 76(5):378–382, 1971.

10. C. A. Halverson, J. B. Ellis, C. Danis, and W. A. Kellogg. Designing
task visualizations to support the coordination of work in software
development. In CSCW ’06, pages 39–48, 2006.

11. J. D. Herbsleb and E. Kuwana. Preserving knowledge in design
projects: what designers need to know. In CHI ’93, pages 7–14, 1993.

12. N. Jalbert and W. Weimer. Automated duplicate detection for bug
tracking systems. In DSN ’08, pages 52–61, 2008.

13. J. Spolsky. Joel on Software blog. FogBUGZ.
http://www.joelonsoftware.com/news/fog0000000162.html.

14. W. L. Johnson and A. Erdem. Interactive explanation of software
systems. Automated Software Engineering, 4(1):53–75, 1997.

15. S. Just, R. Premraj, and T. Zimmermann. Towards the next generation
of bug tracking systems. In VL/HCC ’08, pages 82–85, 2008.

16. A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated
software development teams. In ICSE ’07, pages 344–353, 2007.

17. A. J. Ko, B. A. Myers, and D. H. Chau. A linguistic analysis of how
people describe software problems. In VL/HCC, pages 127–134, 2006.

18. A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Trans. Software Eng.,
32(12):971–987, 2006.

19. J. Landis and G. G. Koch. The measurement of observer agreement
for categorical data. Biometrics, 33(1):159–174, 1977.

20. Ø. Langsrud. ANOVA for unbalanced data: Use Type II instead of
Type III sums of squares. Statistics and Computing, 13(2):163–167,
2003.

21. R Development Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2008. ISBN 3-900051-07-0.

22. P. C. Rigby, D. M. German, and M.-A. Storey. Open source software
peer review practices: a case study of the apache server. In ICSE ’08,
pages 541–550, 2008.

23. G. Ripoche and J. P. Sansonet. Experiences in automating the analysis
of linguistic interactions for the study of distributed collectives.
Journal Comput. Supported Coop. Work, 15(2-3):149–183, 2006

24. P. Runeson, M. Alexandersson, and O. Nyholm. Detection of
duplicate defect reports using natural language processing. In
ICSE ’07, pages 499–510, 2007.

25. R. J. Sandusky. Information, activity and social order in distributed
work: The case of distributed software problem management.
PhD thesis, University of Illinois at Urbana-Champaign. 2005.

26. R. J. Sandusky and L. Gasser. Negotiation and the coordination of
information and activity in distributed software problem management.
In GROUP ’05, pages 187–196, 2005

27. J. Sillito, G. C. Murphy, and K. D. Volder. Questions programmers ask
during software evolution tasks. In SIGSOFT ’06/FSE-14, pages
23–34, 2006.

28. X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to
detecting duplicate bug reports using natural language and execution
information. In ICSE ’08, pages 461–470, 2008.

