
1

Mining Aspects from Version History

Silvia Breu

Computer Laboratory

University of Cambridge, UK

silvia@ieee.org

Thomas Zimmermann

Department of Computer Science

Saarland University, Germany

tz@acm.org

Abstract

Aspect mining identifies cross-cutting concerns in a
program to help migrating it to an aspect-oriented de-
sign. Such concerns may not exist from the beginning,
but emerge over time. By analysing where developers
add code to a program, our history-based aspect mining
(HAM) identifies and ranks cross-cutting concerns.

We evaluated the effectiveness of our approach with
the history of three open-source projects. HAM scales
up to industrial-sized projects: for example, we were
able to identify a locking concern that cross-cuts 1 284
methods in Eclipse. Additionally, the precision of HAM

increases with project size and history; for Eclipse, it
reaches 90% for the top-10 candidates.

1. Introduction

As object-oriented programs evolve over time, they
may suffer from “the tyranny of dominant decompo-
sition” [20]: They can be modularised in only one way
at a time. Concerns that are added later may no longer
align with that modularisation, and thus, end up scat-
tered across many modules and tangled with one an-
other. Aspect-oriented programming (AOP) remedies
this by factoring out aspects and weaving them back
in a separate processing step [10]. For existing projects
to benefit from AOP, these cross-cutting concerns must
be identified first. This task is called aspect mining.

We solve this problem by taking a historical perspec-
tive: we mine the history of a project and identify code
changes that are likely to be cross-cutting concerns;
we call them aspect candidates. Our analysis is based
on the hypothesis that cross-cutting concerns evolve
within a project over time. A code change is likely to
introduce such a concern if the modification gets intro-
duced at various locations within a single code change.

Our hypothesis is supported by the following exam-
ple. On November 10, 2004, Silenio Quarti committed
code changes “76595 (new lock)” to the Eclipse CVS

CVS
CombinationMining

Reinforcement

Simple

Aspect Candidates

Complex

Aspect Candidates

Mining Version Archives

Figure 1. Mining workflow

repository. They fixed bug #76595 “Hang in gfk pix-
buf new” that reported a deadlock1 and required the
implementation of a new locking mechanism for several
platforms. The extent of the modification was enor-
mous: He modified 2 573 methods and inserted in 1 284
methods a call to lock, as well as a call to unlock. As
it turns out, AOP could have been used to add these.

Our approach searches such cross-cutting changes in
the history of a program in order to identify aspect can-
didates. For Silenio Quarti’s changes, we find two sim-
ple aspect candidates ({lock}, L1) and ({unlock}, L2)
where L1 and L2 are sets that contain the 1 284 meth-
ods where lock and unlock have been inserted, respec-
tively. It turns out that L1 = L2, hence, we combine
the two simple aspect candidates into a complex aspect
candidate ({lock, unlock}, L1).

Technically, we mine version archives for aspect can-
didates (see Figure 1). Our implementation HAM first
identifies simple aspect candidates in transactions (Sec-
tion 2). Next, we combine simple aspect candidates
into complex ones that consider more than one method
call (Section 4). We may get several aspect candidates
for the same cross-cutting concern when it was added
in several transactions. Reinforcement combines such
candidates by exploiting localities between transactions
(Section 3).

We evaluated HAM with three open-source Java
projects: JHotDraw (57 360 LOC), Columba (103 094
LOC), and Eclipse (1 675 025 LOC). For each project we

1https://bugs.eclipse.org/

2

ranked candidates and validated the top-50 candidates
manually. Our results are promising: the average pre-
cision is around 50% with the best values for Eclipse;
for the top-10 candidates in Eclipse, HAM’s precision
is better than 90% (Section 6). Altogether, the contri-
butions of this paper are as follows:

HAM adds a new dimension to aspect mining.
Previous approaches considered only a particular
version of a program. Our approach uses project
history as additional input. This enables a new
view on the evolution of cross-cutting concerns.

HAM scales and is platform independent.
HAM is the first aspect mining approach that
scales for industrial-sized projects like Eclipse.
Furthermore, it recognises cross-cutting concerns
across different platforms.

HAM comes with a high precision.
We thoroughly evaluated 405 aspect candidates re-
turned by HAM. The precision increases with the
project size and history, for Eclipse up to 90% for
the top-10 candidates.

2. Simple Aspect Candidates

Previous approaches to aspect mining considered only
a single version of a program using static and dynamic
program analysis techniques. Our approach introduces
an additional dimension: the history of a project.

We model the history of a program as a sequence of
transactions. A transaction collects all code changes
between two versions, called snapshots, made by a pro-
grammer to complete a single development task. Tech-
nically a transaction is defined by the version archive
we analyse, which is CVS in our case. However, our
approach extends to arbitrary version archives.

Motivated by dynamic approaches for aspect mining
that investigate execution traces of programs, we build
our analysis on changes that insert or delete method
calls. Typically, these changes have direct impact on
execution traces. But since we are looking for the intro-
duction of cross-cutting concerns, we concentrate solely
on additions and omit deletions of method calls. This
means that for our purpose a transaction consists of the
set of method calls that were inserted by a developer.

Definition 1 (Transaction)
A transaction T is a set of pairs (m, l). Each pair
(m, l) represents an insertion of a call to method m in
the body of the method l.

We name the method l into which a call is inserted
method location and identify it by its full signature.

Algorithm 1 Simple aspect candidates

1: function Candidates(T)
2: Cresult = ∅
3: for all m ∈ calls(T) do

4: L = {l | l ∈ locations(T), (m, l) ∈ T}
5: Cresult = Cresult ∪ {(m, L)}
6: end for

7: return Cresult

8: end function

9:
10: function Simple Candidates(T)

11: return
[

T∈T

Candidates(T)

12: end function

In contrast, to reduce the cost of preprocessing, we
identify the called method m only by its name and
number of arguments (see Section 5). We associate the
following meta-data with a transaction T :

1. developer(T) is the name of developer who com-
mitted transaction T .

2. timestamp(T) is when a transaction T was com-
mitted.

3. locations(T) = {l | (m, l) ∈ T} is the set of meth-
ods that were changed in transaction T .

4. calls(T) = {m | (m, l) ∈ T} is the set of method
calls that were added in transaction T .

Within the set T of transactions we are searching for
aspect candidates. An aspect candidate represents a
cross-cutting concern in the sense that it consists of
one or more calls to methods M that are spread across
several method locations L.

Definition 2 (Aspect Candidate)
An aspect candidate c = (M,L) consists of a non-
empty set M of methods and a non-empty set L of
locations where each location l ∈ L calls each method
m ∈ M . If |M | = 1, the aspect candidate c is called
simple; if |M | > 1, it is called complex.

Basically every method call m added in transaction
T leads to a potential aspect candidate. Algorithm 1
reflects this idea in function Simple Candidates(T)
which returns for every transaction T ∈ T and every
method call m ∈ calls(T) one aspect candidate. The
result would be huge for projects like Eclipse that have
many method calls and a long history. Thus, we use
filtering and ranking to find actual aspect candidates.
In order to identify aspect candidates that actually
cross-cut a considerable part of a program, we ignore all
candidates c = (M,L) where less than eight locations
are cross-cut, i.e., |L| < 8. Thus, we get large, ho-
mogeneous cross-cutting concerns. We focus on them

3

as maintenance will benefit most from their modular-
isation in aspects. We chose the cut-off value of eight
based on our previous experience [13]; for some projects
lower cut-off values may be required. In addition to fil-
tering, we use the following ranking techniques:

Rank by Size. Obviously, candidates that cross-cut
many locations could be more interesting. Thus, we
sort aspect candidates c = (M,L) by their size |L|
(from large to small). However, we may get noise in
form of method calls that are frequent in Java but are
not cross-cutting, e.g., iter(), hasNext(), or next().

Rank by Fragmentation. This ranking penalises
common Java method calls when they appear in many
transactions. If a cross-cutting concern is added to a
system and not changed later on, it appears in only one
transaction. To capture such aspects, we sort aspect
candidates by the number of transactions in which we
find a candidate (fewer is better). We term this count
the fragmentation of an aspect candidate c = (M,L):

fragmentation(c) = |{T ∈ T | M ⊆ calls(T)}|

In case aspect candidates have the same fragmentation
because they occur in the same number of transactions,
we rank additionally by size |L|.

Rank by Compactness. Similar to the ranking by
fragmentation, this ranking has the advantage that
common Java method calls are ranked low. Cross-
cutting concerns may be introduced in one transaction
and extended to additional locations in later transac-
tions. Since such concerns will be ranked low with the
previous rankings, we use compactness as a third rank-
ing technique (from high to low). The compactness of
an aspect candidate c = (M,L) is the ratio between
the size |L| and the total number of locations where
calls to M occurred in the history:

compactness(c) =
|L|

|{l |∃T ∈ T ,∀m ∈ M : (m, l) ∈ T}|

In the case that two or more aspect candidates have the
same compactness, we rank additionally by size |L|.

3. Locality and Reinforcement

In our experiments, we observed that several cross-
cutting concerns were introduced within one transac-
tion and later inserted to other new locations in later
transactions. We refer to this as “extending a cross-
cutting concern to new locations later”. This happens
frequently when a developer recognises he must com-
plete a task that he had left unfinished with his last
commit. Although such concerns are recognised by our

5

kate

2

mary

1

mary

4

mary

3

kate

7

mary

6

ron

Temporal Locality

Possessional

Locality

=transaction

Figure 2. Possessional and temporal locality
for transaction 4.

technique as multiple aspect candidates, these candi-
dates may be ranked low and missed.

To strengthen aspect candidates that were inserted
in several transactions, we use the concept of locality.
Two transactions are locally related if they were cre-
ated by the same developer or were committed around
the same time. If there exists locality between trans-
actions, we reinforce their aspect candidates mutually.

Temporal Locality refers to the fact that aspect can-
didates may appear in several transactions that are
close in time. In Figure 2 there exists temporal locality
between transaction 4 and transactions 3 and 5.

Possessional Locality refers to the fact that aspect
candidates may have been created by one developer
but committed in different transactions; thus they are
owned by her. Girba et al. [5] define ownership by
the last change to a line; in contrast, we look for the
addition of method calls, which is more fine-grained.
In Figure 2 there exists possessional locality between
transaction 4 and transactions 1, 2, and 7, all of them
were committed by Mary.

Definition 3 (Locality)
Let T1, T1 ∈ T be arbitrary transactions, c = (M,L) be
an aspect candidate, and t be a fixed time interval. We
say T1 and T2 have

(a) temporal locality, written as T1
time
! T2 iff

|timestamp(T1) − timestamp(T2)| ≤ t

(b) possessional locality, written as T1
dev
! T2 iff

developer(T1) = developer(T2)

Presume that we found two aspect candidates c1 =
(M1, L1) and c2 = (M2, L2) in two different trans-
actions where the called methods are the same, i.e.,
M1 = M2. If there exists locality of either form be-
tween these two transactions, we can combine both
aspect candidates. As a result we get a new aspect
candidate c′ = (M1, L1 ∪ L2). We call this process
reinforcement.

4

Algorithm 2 Reinforcement algorithms

1: function Reinforce(T , x ∈ {time, dev})
2: Creinf = ∅
3: for all T ∈ T do

4: Tloc =
n

T ′ | T ′ ∈ T , T ′ x
! T

o

5: Cloc =
S

T ′∈Tloc
Candidates(T ′)

6: for all c = (M, L) ∈ Candidates(T) do

7: Lreinf = {L′ | c′ = (M ′, L′) ∈ Cloc , M ′ = M}
8: Creinf = Creinf ∪

˘

(M, Lreinf)
¯

9: end for

10: end for

11: return Creinf

12: end function

13:

14: function Temporal(T)
15: return Reinforce(T , time)
16: end function

17:
18: function Possessional(T)
19: return Reinforce(T , dev)
20: end function

21:
22: function All(T)
23: return Temporal(T) ∪ Possessional(T)
24: end function

Definition 4 (Reinforcement)
Let c1 = (M1, L1) and c2 = (M2, L2) be aspect candi-
dates. If M1 = M2, the construction of a new aspect
candidate (M,L1 ∪ L2) with M = M1 = M2 is called
reinforcement.

We implemented three reinforcement algorithms, which
are listed in Algorithm 2. The functions for temporal
(Temporal) and for possessional (Possessional) re-
inforcement both call function Reinforce which

1. takes a set T of transactions as input,

2. identifies for each transaction T other transactions
Tloc that are related to T with respect to the given
locality x,

3. computes for each of these transactions the simple
aspect candidates, and

4. builds new combined, or reinforced candidates.

Additionally, we implemented an algorithm All that
combines the results of temporal and possessional re-
inforcement. However, it does not use the localities at
the same time as this could reinforce all transactions
and would thereby lose the historic perspective of our
approach, but applies them independently.

4. Complex Aspect Candidates

Many cross-cutting concerns consist of more than one
method call. An example is the lock/unlock concern

Algorithm 3 Complex aspect candidates

1: function Complex Candidates(Csimple)
2: Cresult = ∅
3: for all (M, L) ∈ Csimple do

4: M =
˘

M ′ | (M ′, L′) ∈ Csimple , L = L′
¯

5: Mcomplex =
S

M′∈M
M ′

6: Cresult = Cresult ∪
˘

(Mcomplex , L)
¯

7: end for

8: return Cresult

9: end function

presented in Section 1. To locate such concerns we
combine two aspect candidates c1 = (M1, L1) and c2 =
(M2, L2) to a complex aspect candidate c′ = (M ′, L′)
with M ′ = M1∪M2 and L′ = L1, if c1 and c2 cross-cut
exactly the same locations, i.e., L1 = L2. This condi-
tion is very selective, however, method calls inserted in
the same locations are very likely to be related.

Algorithm 3 constructs complex aspect candidates.
Function Complex Candidates takes all simple as-
pect candidates as input and combines candidates with
matching method locations into a new complex aspect
candidate. Note that it also combines simple aspect
candidates that were inserted in different transactions.

5. Data Collection

Our mining approach can be applied to any version
control system; however, we based our implementation
on CVS since most open-source projects use it. One of
the major drawbacks of CVS is that commits are split
into individual check-ins and have to be reconstructed.
For this we use a sliding time window approach [26]
with a 200 seconds window. A reconstructed commit
consists of a set of revisions R where each revision r ∈
R is the result of a single check-in.

Additionally, we need to compute method calls that
have been inserted within a commit operation R. For
this, we build abstract syntax trees (ASTs) for every
revision r ∈ R and its predecessor and compute the
set of all calls C1 in r and C0 for the preprocessor by
traversing the ASTs. Then Cr = C1 \ C0 is the set of
inserted calls within r; the union of all Cr for r ∈ R

forms a transaction T =
⋃

r∈R Cr which serves as input
for our aspect mining and are stored in a database.

Since we analyse only differences between single re-
visions, we cannot resolve types because only one file is
investigated at a time. In particular, we miss the sig-
nature of called methods; to limit noise that is caused
by this, we use the number of arguments in addition to
method names to identify methods calls. This heuristic
is frequently used when analysing single files [13, 25].
We would get full method signatures when building

5

snapshots of a system. However, as Williams and
Hollingsworth [23] point out, such interactions with
the build environment (compilers, make files) are ex-
tremely difficult to handle, require manual interaction,
and result in high computational costs. In contrast,
our preprocessing is cheap, as well as platform- and
compiler-independent.

Renaming of a method is represented as deleting
and introducing several method calls. We thus may
incidentally consider renamed calls as aspect candi-
dates. Recognising such changes is known as origin
analysis [6] and will be implemented in a future ver-
sion of HAM. It will eliminate some false positives and
improve precision.

6. Evaluation

In the introduction we told an anecdote how we iden-
tified cross-cutting concerns in the history of Eclipse.
Another example for a cross-cutting concern is the call
to method dumpPcNumber which was inserted to 205
methods in the class DefaultBytecodeVisitor. This
class implements a visitor for bytecode, in particular
one method for each bytecode instruction; the follow-
ing code shows the method for instruction aload 0.

/**

* @see IBytecodeVisitor#_aload_0(int)

*/

public void _aload_0(int pc) {

dumpPcNumber(pc);

buffer.append(OpcodeStringValues

.BYTECODE_NAMES[IOpcodeMnemonics.ALOAD_0]);

writeNewLine();

}

The call to dumpPcNumber can obviously be realised as
an aspect. However, in this case aspect-oriented pro-
gramming can even generate all 205 methods (including
comment) since the methods differ only in the name of
the bytecode instruction.

6.1. Evaluation Setup

For a more thorough evaluation we chose three Java
open-source projects and mined them for cross-cutting
concerns. Refer to Table 1 for some statistics.

JHotDraw 6.0b1 is a GUI framework to build
graphical drawing editors.2 We chose it for its
frequent use as aspect mining benchmark.

Columba 1.0 is an email client that comes with wiz-
ards and internationalisation support.3 We chose
it because of its well-documented project history.

2http://www.jhotdraw.org/
3http://www.columbamail.org/drupal/

Eclipse 3.2M3 is an integrated development environ-
ment that is based on a plug-in architecture.4 We
chose it because it is a huge project with many
developers and a large history.

For each project, we collected the CVS data as de-
scribed in Section 5, mined for simple aspect candi-
dates as defined in Section 2, reinforced them using
the localities established in Section 3, and also built
complex aspect candidates as introduced in Section 4.
We investigated the following questions:

1. Simple Aspect Candidates. How precise is our min-
ing approach? That is, how many simple aspect
candidates are real cross-cutting concerns?

2. Reinforcement. It leads to larger aspect candi-
dates, but does it actually rank true simple aspect
candidates high, thus, improving precision?

3. Ranking. Can we rank aspect candidates such that
more cross-cutting concerns are ranked first?

4. Complex Aspect Candidates. How many complex
aspect candidates can we find by the combination
of simple ones?

To measure precision, we computed for each project,
ranking, and reinforcement algorithm the top 50 simple
aspect candidates. In order to eliminate multiple eval-
uation effort due to possible duplicates, we combined
these rankings into one set per project. For Colum-
ba we got 134, for Eclipse 159, and for JHotDraw 102
unique simple aspect candidates. Next, we sorted these
sets alphabetically by the name of the called method
in order to prevent bias in the subsequent evaluation.
We used this order to classify simple aspect candidates
manually into true and false cross-cutting concerns.
The precision is then defined as the ratio of the number
of true cross-cutting concerns to the number of aspect
candidates that were uncovered by HAM. Precision is
basically the accuracy of our technique’s results and in
general a common measure for search performance.

We considered an aspect candidate (M,L) as a true
cross-cutting concern if it referred to the same function-
ality and the methods M were called in a similar way,
i.e., at the same position within a method and with the
same parameters. An additional requirement for a true
cross-cutting concern was that it can be implemented
using AspectJ. However, we did not take into account
whether aspect-orientation is the best way to realise
the given functionality. In cases of doubt, we classified
a candidate as a false cross-cutting concern.

4http://www.eclipse.org/

6

Table 1. Evaluation subjects

Columba Eclipse JHotDraw

Presence

Lines of code 103 094 1 675 025 57 360
Java files 1 633 12 935 974
Java methods 4 191 74 612 2 043
History

Developer 19 137 9
Transactions 4 105 97 900 269

– that changed Java files 3 186 77 250 241
– that added method calls 1 820 43 270 132

Method calls added 24 623 430 848 7 517
First transaction 2001-04-08 2001-05-02 2000-10-12
Last transaction 2005-11-02 2005-11-23 2005-04-25

Table 2. Precision of HAM (in %) for simple
aspect candidates

Columba Eclipse JHotDraw

Size 52 52 36
Fragmentation 46 54 30
Compactness 42 52 28

Table 3. The effect of reinforcement on the
precision of HAM (in % points)

Columba Eclipse JHotDraw

Temporal locality

Size + 2 – 4 ± 0
Compactness + 2 – 2 + 4

Possessional locality

Size – 8 –20 + 2
Compactness +12 + 8 + 2

All localities

Size – 8 –20 + 2

Compactness +10 + 6 + 2

It would also be interesting to measure recall : the
ratio of correctly identified aspect candidates and all
candidates. Recall measures how well a search algo-
rithm finds what is is supposed to find. However, de-
termining recall values requires the knowledge of all
aspect candidates—which is impossible for real-world
software. We therefore cannot report recall numbers.

6.2. Simple Aspect Candidates

To evaluate our notion of simple aspect candidates we
checked whether the top-50 candidates per ranking and
project were cross-cutting or not. The precision as the
ratio of true cross-cutting functionality and all (50) as-
pect candidates are listed in Table 2 for each project
(columns) and each ranking (rows).

We observe that precision increases with subject
size: It is highest for Eclipse and lowest for JHotDraw,

the smallest subject. The ranking has a minor im-
pact and no ranking is generally superior; the deviation
among the precision values is at most 10 percentage
points. Nevertheless, the ranking by size, which simply
ranks by the number of locations where a method was
added, seems to work well across all projects. It reaches
a precision between 36 and 52 percent. Roughly speak-
ing, every second (for JHotDraw every third) mined
aspect candidate is a real cross-cutting concern.

Unlike ranking by size, ranking by fragmentation
and by compactness take transactions or the number
of overall modified locations into account. We be-
lieve that the poor performance of these rankings for
our smaller subjects JHotDraw and Columba is caused
by the much smaller number (hundreds/few thousands
versus tens of thousands) of transactions and added
method calls available for mining (see Table 1). In
other words, we expect these rankings to benefit from
long project histories. These generally correspond to
many transactions, as they are present in Eclipse.

We can identify cross-cutting concerns with a preci-
sion between 36% and 54%; the precision increases
with project size and history.

6.3. Reinforcement

After mining simple aspect candidates we evaluated the
effect of reinforcement on them. Reinforcement takes a
simple aspect candidate (M,L) from a single transac-
tion and looks at locally related transactions in order
to arrive at a candidate (M,L′) with an enlarged set
L′ ⊃ L of locations. For the evaluation we reinforced
the simple aspects of our subjects using temporal, pos-
sessional, and contextual locality, and also using all
localities applied at once. As before, we checked the
top-50 aspect candidates and computed the precision.

Table 3 lists the change in precision for each subject
(columns), each locality (rows), and each ranking by
size or compactness (sub-rows). Changes are relative
to the precision before reinforcement (Table 2). Hence,
these changes express the effect of reinforcement on the
precision of our mining.5

Temporal locality produces slight improvements but
seems to be unsatisfying with large projects. We pre-
sume that this is because we chose the same fixed time
window of 2 days for all three subjects; we plan to
investigate whether a window size proportional to a
project’s size would yield better results. The Eclipse
project has far more developers as well as CVS trans-
actions per day than JHotDraw and Columba. Thus,

5Note that for reinforcement we did not rank by fragmenta-
tion. This ranking punishes reinforced aspect candidates that
are spread across many transactions.

7

we have too much noise that diminishes the positive
impact of temporal locality for Eclipse.

Possessional locality shows the most significant im-
provement. Albeit ranking by size decreases preci-
sion up to 20 percentage points, possessional locality
in combination with ranking by compactness improves
precision up to 12 percentage points for all three sub-
jects. In large projects, get and set methods are in-
serted in many locations and thus alleviate the positive
effects of possessional locality for Eclipse when aspect
candidates are ranked by size.

All localities considers the application of both local-
ities. The effect on the precision is the same as with re-
inforcement based on possessional locality only: rank-
ing by size annihilates the positive impact, ranking by
compactness facilitates it. Thus, possessional locality
is dominant and affects precision prominently.

The good results for possessional locality suggest
that aspects belong to a developer, and are mostly not
distributed over many transactions. This is backed up
by the notably improved precision of our approach af-
ter reinforcement based on possessional locality com-
bined with ranking by compactness. Besides, all our
results, without and with reinforcements, suggest that
small projects have small histories and thus we achieve
a significantly lower precision. In addition, precision
can only be improved marginally with reinforcements.
This seems consequential as reinforcements leverage a
large amount of transactions and developers.

Possessional locality improves the precision for rank-
ing by compactness; this indicates that cross-cutting
concerns are owned by developers.

6.4. Precision Revisited

So far we have evaluated our mining by computing the
precision of the top-50 aspect candidates in a ranking.
However, it is unlikely that a developer is really inter-
ested in 50 aspect candidates. Instead, she will prob-
ably look only at ten or twenty candidates at most.
We therefore have broken down the precision for the
top ten, twenty, and so on candidates for each project.
The results for all three subjects are similar. For the
detailed discussion here, we have chosen Eclipse for two
reasons—it is an industrial-sized project and the results
are most meaningful; they are plotted in Figure 3.

The graph on the left shows the precision when
ranked by size before and after applying different rein-
forcements. The precision stays mostly flat when mov-
ing from the top-50 to the top-10 candidates. However,
the overall precision remains between 30 and 60 per-
cent. Reinforcement seems to make matters only worse,
as ranking by size before reinforcement performs best.

100%

80%

60%

40%

20%

0%
 50 40 30 20 10

Top n

No Locality
Possessional Locality

Temporal Locality
All Localities

(a) Ranking by size

100%

80%

60%

40%

20%

0%
 50 40 30 20 10

Top n

No Locality
Possessional Locality

Temporal Locality
All Localities

(b) Ranking by compactness

Figure 3. Precision of HAM with respect to the
length of ranking for subject Eclipse

In contrast, the graph on the right shows a dramati-
cally different picture for the precision when ranked by
compactness. The precision is highest for the top-10
candidates and decreases when additional candidates
are taken into account; it is lowest for the top-50 can-
didates. However, the first ten candidates have a pre-
cision of at least 90%. This means, nine out of ten are
true cross-cutting concerns. Thus, ranking by com-
pactness is very valuable for developers.

In summary, size is not the most prominent attribute
of cross-cutting concerns, but compactness is. This is
also supported by the obversation that temporal and
possessional locality enhance ranking by compactness.

Ranking by compactness pushes true cross-cutting
concerns to the top such that we reach a precision
of 90% for the top-10 candidates in Eclipse.

6.5. Complex Aspect Candidates

For our evaluation subjects, we combined simple aspect
candidates into a complex candidate if they cross-cut
exactly the same locations. This condition was very
selective: for Columba we got 21, for Eclipse 178, and
for JHotDraw 11 complex aspect candidates. Note that
all candidates cross-cut at least 8 locations. Below, we
discuss the results from Eclipse in more detail.

Table 4 shows the top 20 complex aspect candi-
dates ranked by size for the Eclipse project. Each row
represents one complex aspect candidate (M,L). The
second column contains the methods M called by an
aspect candidate, where the number in brackets de-
notes the number of arguments for each method. The
third column gives the number |M | of methods and
the fourth column shows the number |L| of method lo-
cations where calls to M were inserted. In the first
column we provide the result of our manual inspection
of this aspect candidate: 3 for an actual cross-cutting
concern and 7 for a false positive.

HAM indeed finds cross-cutting concerns consisting
of several method calls. In addition, they are ranked
on top of the list. However, the performance of our

8

Table 4. Complex aspect candidates (M,L)

found for Eclipse

M |M | |L|

3 {lock(0), unlock(0)} 2 1284
3 {postReplaceChild(3), preReplaceChild(3)} 2 104
3 {postLazyInit(2), preLazyInit(0)} 2 78
7 {blockSignal(2), unblockSignal(2)} 2 63
3 {getLength(0), getStartPosition(0)} 2 62
3 {hasChildrenChanges(1), visitChildrenNeeded(1)} 2 62
7 {modificationCount(0), setModificationCount(1)} 2 60
7 {noMoreAvailableSpaceInConstantPool(1),

referenceType(0)} 2 57
7 {g signal handlers block matched(7),

g signal handlers unblock matched(7)} 2 54
7 {getLocalVariableName(1), getLocalVariableName(2)} 2 51
7 {isExisting(1), preserve(1)} 2 48
7 {isDisposed(0), isTrue(1)} 2 37
7 {gtk signal handler block by data(2),

gtk signal handler unblock by data(2)} 2 34
7 {error(1), isDisposed(0)} 2 31
7 {getWarnings(0), setWarnings(1)} 2 31
7 {getCodeGenerationSettings(1), getJavaProject(0)} 2 31
7 {SimpleName(1), internalSetIdentifier(1)} 2 29
7 {iterator(0), next(0)} 2 27
3 {postValueChange(1), preValueChange(1)} 2 26
7 {SimpleName(1), internalSetIdentifier(1)} 2 25

approach decreases when it comes to lower-ranked as-
pect candidates. We believe that one reason for poor
performance are get and set methods that are inserted
in many locations at the same time and thus out-rank
actual cross-cutting concerns in the number of occur-
rences. Although these getters and setters are not
cross-cutting, they still describe perfect usage patterns.

Furthermore, we find only few complex cross-cutting
concerns. This is mainly a consequence of the condition
that the locations sets have to be the same (L1 = L2).
We could relax this criterion to the requirement that
one location set has to be a subset of the other (L1 ⊆
L2), however, this adds exponential complexity to the
determination of aspect candidates. We will improve
on this in our future work. For now, let us look at three
cross-cutting concerns in Eclipse.

Locking Mechanism. This cross-cutting concern was
already mentioned in Section 1. Calls to both meth-
ods lock and unlock were inserted in 1 284 method
locations. Here is such a location:

public static final native void _XFree(int address);

public static final void XFree(int /*long*/ address) {

lock.lock();

try {

_XFree(address);

} finally {

lock.unlock();

}

}

The other 1 283 method locations look similar. First
lock is called, then a corresponding native method,
and finally unlock. It is a typical example of a cross-
cutting concern which can be easily realised using AOP.

Note that this lock/unlock concern cross-cuts differ-
ent platforms. It appears in both the GTK and Mo-
tif version of Eclipse. Typically such cross-platform
concerns are recognised incompletely by static and dy-
namic aspect mining approaches unless the platforms
are analysed separately and results combined.

Abstract Syntax Trees. Eclipse represents nodes of
abstract syntax trees (ASTs) by the abstract class
ASTNode and several subclasses. These subclasses fall
into the following simplified categories: expressions
(Expression), statements (Statement), and types
(Type). Additionally, each subclass of ASTNode has
properties that cross-cut the class hierarchy. An exam-
ple for a property is the name of a node: There are
named (QualifiedType) and unnamed types (Prim-
itiveType), as well as named expressions (FieldAc-
cess). Additional properties of a node include the type,
expression, operator, or body.

This is a typical example of a role super-imposition
concern [15]. As a result, every named subclass of AST-
Node implements method setName which results in du-
plicated code. With AOP the concern could be realised
via the method-introduction mechanism.

public void setName(SimpleName name) {

if (name == null) {

throw new IllegalArgumentException();

}

ASTNode oldChild = this.methodName;

preReplaceChild(oldChild, name, NAME_PROPERTY);

this.methodName = name;

postReplaceChild(oldChild, name, NAME_PROPERTY);

}

Our mining approach revealed this cross-cutting con-
cern with several aspect candidates. The methods pre-
ReplaceChild and postReplaceChild are called in the
aforementioned setName method; the methods pre-

LazyInit and postLazyInit guarantee the safe ini-
tialisation of properties; and the methods preValue-

Change and postValueChange are called when a new
operator is set for a node.

Cloning. Another cross-cutting concern was surpris-
ing because it involved two getter methods getStart-
Position and getLength. These are always called in
clone0 of subclasses of ASTNode and were also identi-
fied by our approach.

ASTNode clone0(AST target) {

BooleanLiteral result = new BooleanLiteral(target);

result.setSourceRange(this.getStartPosition(),

this.getLength());

result.setBooleanValue(booleanValue());

return result;

}

We can find complex cross-cutting concerns;
once again, they are ranked on top.

9

7. Related Work

Previous approaches to aspect mining considered a pro-
gram only at a particular time, using traditional static
and dynamic program analysis techniques. One fun-
damental problem is their scalability. While dynamic
analysis strongly depends on a compilable, executable
program version and on the coverage of the used pro-
gram test cases, static analyses often produce too many
details and false positives as they cannot weed out
non-executable code. To overcome these limitations,
each approach would need additional methods which
in turn make them then far less practical. Besides,
many approaches require user interaction or even pre-
vious knowledge about the program.

Static Aspect Mining. The Aspect Browser [7]
identifies cross-cutting concerns with textual-pattern
matching (much like “grep”) and highlights them. The
Aspect Mining Tool (AMT) [8] combines text- and
type-based analysis of source code. Ophir [19] uses
a control-based comparison, applying code clone de-
tection on program dependence graphs. Tourwé and
Mens [22] introduce an identifier analysis based on for-
mal concept analysis for mining aspectual views such
as structurally related classes and methods. Krinke
and Breu [12] propose an automatic static aspect min-
ing based on control flow. The control flow graph of
a program is mined for recurring execution patterns of
methods. The fan-in analysis by Marin, van Deursen,
and Moonen [16] determines methods that are called
from many different places—thus having a high fan-in.
Our approach is similar since we analyse how fan-in
changed over time. In future work, we will investigate
how this additional information increases precision.

Dynamic Aspect Mining. DynAMiT (Dynamic As-
pect Mining Tool) [1, 3] analyses program traces re-
flecting the run-time behaviour of a system in search
for recurring execution patterns of method relations.
Tonella and Ceccato [21] suggest a technique that ap-
plies concept analysis to the relationship between exe-
cution traces and executed computational units.

Hybrid Techniques. Loughran and Rashid [14] in-
vestigate possible representations of aspects found in
a legacy system in order to provide best tool support
for aspect mining. Breu also reports on a hybrid ap-
proach [2] where the dynamic information of the pre-
vious DynAMiT approach is complemented with static
type information such as static object types.

Mining Co-change. One of the most frequently used
techniques for mining version archives is co-change.
The basic idea is simple: Two items that are changed
together in the same transaction, are related to each

other. Our approach is also based on co-change. How-
ever, we use a different, more specific notion of co-
change. Methods are part of a (simple) aspect can-
didate when they are changed together in the same
transaction and additionally the changes are the same,
i.e., a call to the same method is inserted.

Mining Co-addition of Method Calls. Recently,
research extended the idea of co-change to additions
and applied this concept to method calls: Two method
calls that are inserted together in the same transaction,
are related to each other. Williams and Hollingsworth
use this observation to mine pairs of functions that
form usage patterns from version archives [24]. Livshits
and Zimmermann use data mining to locate patterns of
arbitrary size and applied dynamic analysis to validate
their patterns and identify violations [13]. Our work
also investigates the addition of method calls. How-
ever, within a transaction, we do not focus on calls that
are inserted together, but on locations where the same
call is inserted. This allows us to identify cross-cutting
concerns rather than usage patterns.

8. Conclusions and Future Work

We are the first to use version history to mine aspect
candidates. The underlying hypothesis is that cross-
cutting concerns emerge over time. By introducing the
dimension of time, our aspect mining approach has the
following advantages:

1. It scales to industrial-sized projects like Eclipse. In
particular, we reached the highest precision (above
90%) for big projects with a long history. Addi-
tionally, we focus on concerns that cross-cut huge
parts of a system. For small projects, HAM suffers
from the much fewer data available, resulting in
lower precision (about 60%).

2. It discovers cross-cutting concerns across plat-
form-specific code (see lock/unlock in Sec-
tion 6.5). Static and dynamic approaches recog-
nise such concerns only when the code base is
mined multiple times.

3. It yields a high precision. The average precision
is around 50%, however, precision increases up to
90% with the project size and history.

Our work shows that version archives are indeed useful
for aspect mining. Additionally, new questions arise,
such as how do cross-cutting concerns evolve over time?
To investigate these, we need to enhance tool support
and improve the precision of our approach. Thus, our
future work will concentrate on the following topics.

10

Tool Support. We plan to implement an Eclipse plu-
gin that will help developers to investigate aspect
candidates that were identified by HAM. The re-
sults can also be integrated into existing tools such
as FEAT [18], ConcernMapper [17], or Mylar [9].

Cross-Validation. In order to improve the precision
of our technique as well as to verify whether as-
pect candidates are present at run-time, we plan to
combine HAM with DynAMiT’s trace analysis [1].
We will also compare the precision of our results
to existing aspect mining approaches.

Aspect Genealogy. Motivated by the work of Kim et
al. [11], we plan to extend a study by Canfora and
Cerulo [4] and investigate how different classes of
aspects [15] evolve over time. Furthermore, clone
detection algorithms could be run in order to de-
tect more complex cross-cutting concerns that de-
pend on similar code snippets.

We are hopeful that taking lessons from history will
continue to help us to improve today’s software.

Acknowledgements. Our work on mining software reposito-
ries was partly funded by the (German) DFG, grant Ze 509/1-1.
Silvia Breu is funded by a Gates Scholarship, Thomas Zim-
mermann is funded by the DFG-Graduiertenkolleg “Leistungs-
garantien für Rechnersysteme”. Special thanks to our office
inmate Christian Lindig for the fruitful discussions on the ap-
proach, and his useful comments on earlier revisions of this pa-
per. Thanks are due to Alan Mycroft, Stefanie Scherzinger, An-
dreas Zeller and the anonymous reviewers for valuable comments
on earlier revisions of this paper, and to Stephan Neuhaus and
Valentin Dallmeier who relieved us of office work when it came
to the submission deadline.

References

[1] S. Breu. Aspect Mining Using Event Traces. Master’s
thesis, University of Passau, Germany, March 2004.

[2] S. Breu. Extending Dynamic Aspect Mining with Static
Information. In Proc. of 5th International Workshop on
Source Code Analysis and Manipulation (SCAM), pp. 57–
65. IEEE Computer Society, Budapest, Hungary, 2005.

[3] S. Breu and J. Krinke. Aspect Mining Using Event Traces.
In Proc. of 19th Intl. Conf. on Automated Software Engi-
neering (ASE), pp. 310–315. IEEE Press, 2004.

[4] G. Canfora and L. Cerulo. How Crosscutting Concerns
Evolve in JHotDraw. In Post-Proc. of Workshop on Soft-
ware Technology and Engineering Practice, 2005.

[5] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How De-
velopers Drive Software Evolution. In Proc. of Intl. Work-
shop on Principles of Software Evolution (IWPSE). IEEE
Computer Society Press, 2005.

[6] M W. Godfrey and L. Zou. Using Origin Analysis to
Detect Merging and Splitting of Source Code Entities.
IEEE Transactions on Software Engineering, 31(2):166–
181, 2005.

[7] W. G. Griswold, Y. Kato, and J. J. Yuan. Aspect Browser:
Tool Support for Managing Dispersed Aspects. Technical
Report CS99-0640, UC, San Diego, 1999.

[8] J. Hannemann and G. Kiczales. Overcoming the Prevalent
Decomposition of Legacy Code. In Workshop on Advanced
Separation of Concerns, 2001.

[9] M. Kersten and G. Murphy. Mylar: A Degree-of-Interest
Model for IDEs. In Proc. Intl. Conf. on Aspect-Oriented
Software Development, pp. 159–168. ACM Press, 2005.

[10] G. Kiczales et al. Aspect-Oriented Programming. In Proc.
11th Europ. Conf. on Object-Oriented Programming.

[11] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An
Empirical Study of Code Clone Genealogies. In Proc. of
Europ. Software Engineering Conf./ACM SIGSOFT Intl.
Symposium on the Foundations of Software Engineering
(ESEC/FSE), pp. 187–196, New York, USA, 2005. ACM
Press.

[12] J. Krinke and S. Breu. Control-Flow-Graph-Based Aspect
Mining. In 1st Workshop on Aspect Reverse Engineering
(WARE) at Working Conf. on Reverse Engineering, 2004.

[13] B. Livshits and T. Zimmermann. DynaMine: Find-
ing Common Error Patterns by Mining Software Revi-
sion Histories. In Proc. of Europ. Software Engineering
Conf./ACM SIGSOFT Intl. Symposium on the Founda-
tions of Software Engineering, pp. 296–305, NY, USA,
2005. ACM Press.

[14] N. Loughran and A. Rashid. Mining Aspects. In Work-
shop on Early Aspects: Aspect-Oriented Requirements En-
gineering and Architecture Design, 2002.

[15] M. Marin, L. Moonen, and A. van Deursen. A Classification
of Crosscutting Concerns. In ICSM, pp. 673–676. IEEE
Computer Society, 2005.

[16] M. Marin, A. van Deursen, and L. Moonen. Identifying
Aspects Using Fan-In Analysis. In 11th Working Confer-
ence on Reverse Engineering (WCRE), pp. 132–141. IEEE
Computer Society, 2004.

[17] M. Robillard and F. Weigand-Warr. Concernmapper: Sim-
ple View-Based Separation of Scattered Concerns. In
Proc. of eclipse Technology eXchange (eTX) Workshop,
2005.

[18] M. P. Robillard and G. C. Murphy. Concern Graphs: Find-
ing and Describing Concerns Using Structural Program De-
pendencies. In 24th Intl. Conference on Software Engineer-
ing (ICSE), pp. 406–416, 2002.

[19] D. Shepherd and L. Pollock. Ophir: A Framework for
Automatic Mining and Refactoring of Aspects. Technical
Report 2004-03, U Delaware, 2003.

[20] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr.
N Degrees of Separation: Multi-Dimensional Separation of
Concerns. In ICSE-21, pp. 107–119, 1999.

[21] P. Tonella and M. Ceccato. Aspect Mining through the For-
mal Concept Analysis of Execution Traces. In 11th Work-
ing Conference on Reverse Engineering (WCRE), pp. 112–
121. IEEE Computer Society, 2004.

[22] T. Tourwé and K. Mens. Mining Aspectual Views Us-
ing Formal Concept Analysis. In Proc. of Workshop on
Source Code Analysis and Manipulation (SCAM), pp. 97–
106. IEEE Computer Society, 2004.

[23] C. C. Williams and J. K. Hollingsworth. Automatic Min-
ing of Source Code Repositories to Improve Bug Finding
Techniques. IEEE Transactions on Software Engineering,
31(6):466–480, 2005.

[24] C. C. Williams and J. K. Hollingsworth. Recovering System
Specific Rules from Software Repositories. In Proc. Intl.
Workshop on Mining Software Repositories, 2005.

[25] T. Xie and J. Pei. MAPO: Mining API Usages from Open
Source Repositories. In Proc. Intl. Workshop on Mining
Software Repositories, pp. 54–57, Shanghai, 2006.

[26] T. Zimmermann and P. Weißgerber. Preprocessing CVS
Data for Fine-Grained Analysis. In Proc. Intl. Workshop
on Mining Software Repositories, Edinburgh, 2004.

