Duplicate Bug Reports Considered Harmful ... Really?

Nicolas Bettenburg
Saarland University
nicbet@st.cs.uni-sb.de

Rahul Premraj
Saarland University
premraj @cs.uni-sb.de

Abstract

In a survey we found that most developers have experienced
duplicated bug reports, however, only few considered them
as a serious problem. This contradicts popular wisdom
that considers bug duplicates as a serious problem for open
source projects. In the survey, developers also pointed out
that the additional information provided by duplicates helps
to resolve bugs quicker. In this paper, we therefore propose
to merge bug duplicates, rather than treating them sepa-
rately. We quantify the amount of information that is added
for developers and show that automatic triaging can be im-
proved as well. In addition, we discuss the different reasons
why users submit duplicate bug reports in the first place.

1. Introduction

In software maintenance, users inform developers via bug
reports which part of a software product needs corrective
maintenance. For large projects with many users the amount
of bug reports can be huge. For example as of April 2008,
MOZILLA had received more than 420,000 and ECLIPSE
more than 225,000 bug reports. However, not all of them
are unique because often users submit reports that describe
problems already filed, also called duplicate reports or sim-
ply duplicates. For MOZILLA about 30% and for ECLIPSE
about 20% of all bug reports are duplicates (as reported by
Anvik et al. [1]).

A common belief in software development is that enter-
ing bug duplicates is bad and therefore considered harmful.
Frequent arguments against duplicates are that they strain
bug tracking systems and demand more effort from quality
assurance teams—effort that could instead be utilized else-
where to improve the product.

In previous work, we conducted a survey on the quality
of bug reports and frequent problems in bug reporting [3,4].
One ECLIPSE developer pointed out the following:

“Duplicates are not really problems. They often add useful
information. That this information were filed under a new
report is not ideal [. .. ]”
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On his blog Alan Page, Director of Test Excellence at
Microsoft, lists the following three arguments why “worry-
ing about them [duplicates] is bad” [14].

1. Often there are negative consequences for users who
enter duplicates. As a result they might err on the side
of not entering a bug, even though it is not filed yet.

2. Triagers are more skilled in detecting duplicates than
users and they also know the system better. While a
user will need a considerable amount of time to browse
through similar bugs, triagers can often decide within
minutes whether a bug report is a duplicate.

3. Bug duplicates can provide valuable information that
helps diagnose the actual problem.

In this paper, we provide empirical evidence for the third ar-
gument and show that duplicates indeed provide additional
information. With respect to the first argument, we cannot
provide hard evidence of the consequences for users, e.g.,
gaining a bad reputation. However, we would like to point
out that a substantial amount of bugs for MOZILLA start
with “Apologies if this is a duplicate”. Many users also feel
the need to explicitly mention that they did several queries
and could not find a similar bug. It is also a frustrating ex-
perience when their reports get resolved as duplicates and
all provided details simply get discarded as pointed out by
a user in our previous survey [4]:

“Typically bugs I have reported are already reported but by
much less savvy people who make horrible reports that lack
important details. It is frustrating to have spent lots of time
making an exceptionally detailed bug report to only have it
marked as a duplicate because someone (usually not techni-
cally qualified) already made a report.”

After presenting the terminology (Section 2) and discussing
the data collection (Section 3), we investigate the following
two hypotheses:

H1 Duplicate bug reports provide developers with infor-
mation that was not present in the original report.

H2 The information in bug duplicates can improve auto-
mated triaging techniques, i.e., who should fix a bug.



To test the first hypothesis H1, we compare the infor-
mation in the original reports with duplicates to quantify
how much information is new (Section 4). To test hypothe-
sis H2, we build prediction models for automate bug triag-
ing [2] and compare the results of models trained with and
without duplicate reports (Section 5). Next, we present sev-
eral reasons why users enter duplicates in the first place and
support them with examples from ECLIPSE (Section 6). We
conclude the paper with a discussion of threats to validity
(Section 7), related work (Section 8), and recommendations
on how to improve bug tracking systems (Section 9).

2. Terminology

Often when a problem is encountered with a software prod-
uct, a bug report is created in the bug database. This report
contains a description of the failure' and is subsequently
used by the developers to correct the defect, i.e., the error in
the source code. Often several reports are submitted for the
same failure or the same defect, which are called duplicate
reports. In the presence of duplicates, developers choose
one bug report as the master report. In Section 6 we discuss
several factors that lead to the creation of duplicates.

Deciding which reports are duplicates is a tedious task,
often referred to as duplicate detection. To assist triagers,
research proposed to use natural language processing [10,
17], sometimes combined with execution information [19].

Once a duplicate report is identified, it is typically closed
and all information is discarded. In this paper, we argue
that this is a bad practice: instead of discarding duplicate
reports, they should rather be merged with the master re-
port. We refer to a master report that is combined with its
duplicate reports as extended master report. To quantify
the amount of value added we use information items, which
are for example predefined fields (product, component, op-
erating system), attachments, screenshots, or structural ele-
ments (stack traces, patches, source code).

3. Data Collection

For the experiments in this paper, we used the bug database
of the ECLIPSE project, which is available as an XML export
on the web-site of the MSR Mining Challenge 2008 [12].
The database consists of a total of 211,843 bug reports,
which have been reported between October 10, 2001, and
December 14, 2007. Out of these, 16,511 are master reports
with 27,838 duplicate reports.

3.1. Information Items in Bug Reports

Bug reports consist of a description, which describes the
bug and how to reproduce it, a title (also called summary),

I'This paper’s terminology follows Zeller [23] and Runeson et al. [17].

which is a one-line abstract of the description. They also
have several predefined fields such as component, product,
priority, affected version, operating system, and target mile-
stone (when a bug is expected to be resolved). In addition,
the user who submitted and the developer who is assigned
to the bug report are recorded.

Developers and users can add attachments to bug reports,
which often are screenshots or patches. To recognize the
type of an attachment, we used the UNIX tool “file”, which
returns the mime-type of a file. Whenever the mime-type of
a file starts with “image/”, we consider it to be a screenshot.
To detect patch files, we defined regular expressions.

The description field of bug reports often contains struc-
tural information such as stacktraces and patches, which
help developers to better understand the nature of the bug.
Duplicates often contain additional structural information
(different in type or content) from what is present in the
master reports. We used a tool called infoZilla [5] to de-
tect structural information in bug reports. infoZilla uses a
multitude of regular expressions to detect stacktraces and
patches. For more information on infoZilla, we refer the
reader to our previous work [5].

3.2. Duplicate Reports

Whenever developers detect a duplicate, they resolve the
report as DUPLICATE and add a reference to the master
report. In the XML export, this reference is saved in the
dup-id element, which we used to identify duplicates and
their master reports. An alternative approach to retrieve du-
plicates is to scan comments for automatically generated
messages such as “*** This bug has been marked as a du-
plicate of 42 ***”_ Scanning comments has the disadvan-
tage that it sometimes recognizes incorrect master reports
because the messages are not updated when the master re-
port is changed. For ECLIPSE, scanning comments would
have added 1,009 false (outdated) links to master reports.
In contrast, the references in the dup_-id element of the
XML export are always up-to-date.

Previous research on duplicates encountered the inverse
duplicate problem [19]: after developers detect two dupli-
cates, they do not always mark the earlier report as master
report. Instead, they choose the master report based on the
amount of progress that has been made: “whichever bug is
further along in the process of getting fixed should not be
made a duplicate” [16]. In ECLIPSE about 31% of all master
reports are newer than one of their duplicate reports. In con-
trast to research on bug duplicate detection, which defines
the master report as the earliest report [10, 17, 19], we de-
cided to use the original master reports as defined by devel-
opers. The rationale behind this decision is that we want to
quantify the amount of additional information that is hidden
in what developers consider (intentionally) as duplicates.



Another issue when processing BUGZILLA databases for
duplicates is the lack of explicit transitivity in the dupli-
cate relation. When a bug report A is resolved as dupli-
cate of B and later bug report B is resolved as duplicate
of C, bug report A should be marked as a duplicate of
C as well. However, in BUGZILLA this is currently re-
alized as chains of duplicates A—B—C. For our experi-
ments we resolved this issue and considered C as the mas-
ter reports for both A and B. In total this affected 1,880
out of the 27,838 duplicate links; the longest chain of du-
plicates that we encountered consisted of five links, bug
1523—1555—1568—1570—1619—1667.

A minor issue was the presence of cycles, for example,
bug report A is a duplicate of B and vice versa. For ECLIPSE
we observed only one instance, 29986+—29989. We could
manually resolve the cycle based on the developers’ com-
ments (bug 29986 was a duplicate of 15307).

4. How much Information Duplicates Add

In this section we quantify and compare the information
items for master reports with the ones for bug duplicates.
Table 1 consists of the following columns:

e The first column presents all information items that we
extracted (see Section 3.1). The items fall in four cat-
egories: predefined fields such as product and compo-
nent, patches, screenshots, and stacktraces. Patches
and stacktraces are often found in the description field
or as separate attachments.

e The second column “Master” lists the average count of
each information item in the original master reports,
i.e., when bug duplicates are ignored. This count cor-
responds to a practice that is found in many projects:
once duplicates are detected, they are simply closed
and all information that they provided is discarded.

e The third column “Extended” lists the average count of
each information item in the extended master reports.
This count would correspond to a practice where bug
duplicates are merged with master reports and all in-
formation is retained.

e The fourth column “Change” is the difference between
“Extended” and “Master” and represents the average
number of information items that bug duplicates would
add per master report.

In order to quantify the amount of additional “new” data
for master reports, we counted unigue items whenever pos-
sible. For predefined fields we counted the unique values;
for patches the unique files that were patched; for screen-
shots the number of unique filenames and file sizes.

Table 1. Average amount of information
added by duplicates per master report.

Average per master report

Information item Master Extended Change*

PREDEFINED FIELDS

— product 1.000 1.127 +0.127
— component 1.000 1.287 +0.287
— operating system 1.000 1.631 +0.631
— reported platform 1.000 1.241 +0.241
— version 0.927 1.413 +0.486
— reporter 1.000 2412 +1.412
— priority 1.000 1.291 +0.291
— target milestone 0.654 0.794 +0.140
PATCHES

— total 1.828 1.942 +0.113
— unique: patched files 1.061 1.124 +0.062
SCREENSHOTS

— total 0.139 0.285 +0.145
— unique: filename, filesize 0.138 0.281 +0.143
STACKTRACES

— total 0.504 1.422 +0.918
— unique: exception 0.195 0.314 +0.118
— unique: exception, top frame 0.223 0.431 +0.207
—unique: exception, top 2 frames  0.229 0.458 +0.229
— unique: exception, top 3 frames 0.234 0.483 +0.248
— unique: exception, top 4 frames  0.239 0.504 +0.265
— unique: exception, top 5 frames 0.244 0.525 +0.281

* For all information items the increase is significant at p < .001.

T Exception
org.eclipse.swt.SWTException : Invalid Thread access
at org.eclipse.swt.SWT.error(SWT. java:3358) — Frame 1
at org.eclipse.swt.SWT.error(SWT.java:3281) — Frame 2
at org.eclipse.swt.SWT.error(SWT. java:3252) — Frame 3
at org.eclipse.swt.widgets.Widget.error(Widget.java:432) —Frame 4

at org.eclipse.swt.widgets.Widget.checkWidget(Widget.java:328) — Frame 5

at org.eclipse.swt.widgets.Tree.getSelection(Tree.java:1827)

at org.eclipse.core.internal.jobs.Worker.run(Worker.java:58)

Figure 1. A sample stacktrace.

For stacktraces we counted the number of unique excep-
tions and unique top n stack frames (forn =1, ..., 5). For
an example of exception and frames for a stacktrace, we
refer to Figure 1.

Coming back to Table 1, every master report contains
exactly one operating system (as indicated by the 1.000 in
“Master”’). When merged with their duplicates, the average
number of unique operating systems in extended master re-
ports increases to 1.631 (“Extended”). This means that du-
plicates could add on average 0.631 operating systems to
existing bugs as long as duplicates are not just discarded.



Most duplicates are filed by users who are different from
the ones who filed the original master report,”> which ex-
plains the large increase in number of unique reporters in
Table 1. A reporter’s reputation can go a long way in influ-
encing the future course of a bug report. To quote a respon-
dent from our previous survey on bug report quality [4]:

“Well known reporters usually get more consideration than
unknown reporters, assuming the reporter has a pretty good
history in bug reporting. So even if a “well-known” reporter
reports a bug which is pretty vague, he will get more attention
than another reporter, and the time spent trying to reproduce
the problem will also be larger.”

This suggests that a master report may get more attention if
a duplicate filed by a known reporter gets noticed.

Besides reporters, duplicates also provide substantial ad-
ditional information for operating system, version, prior-
ity, and component. We also found that duplicates add on
average 0.113 patches and 0.062 additionally patched files
per master report. Similarly, bug duplicates add on average
0.143 screenshots.

We compared stacktraces by considering the exception
and the first five stack frames. On average, 0.918 stack-
traces were found in the duplicate bug reports. Within these,
we found on average 0.118 occurrences of additional excep-
tions in duplicates and 0.281 stacktraces that contained code
locations (in the top five frames) that have not been reported
before.

Our findings show that duplicates are likely to provide
different perspectives and additional pointers to the origin
of bugs and thus can help developers to correct bugs. For
example, having more stacktraces reveals more active meth-
ods during a crash, which helps to narrow down the sus-
pects. To test for statistical significance of our results, we
conducted a one-sided paired t-test [18,20]. For all infor-
mation items the increase in information items caused by
duplicates was significant at p < .001.

Overall, the findings of this part support our first hypoth-
esis that duplicate bug reports provide developers with in-
formation that was not present in the original report (HI)
and make a case for re-evaluation of the treatment and pre-
sentation of duplicates in bug tracking systems.

S. Improved Triaging with Duplicates

Bug triaging is the assignment of bug reports to a developer
in the project who is potentially most suited to fixing the
bug. This task is undertaken by a member of the project,
referred to as the triager. Often, projects such as ECLIPSE
receive a large number® of bug reports daily that need to be

2However, this is not always the case as discussed in Section 6.
30n average, 94 new bugs were reported daily in the ECLIPSE bug
database between Oct. 2001 — Dec. 2007.

triaged manually. Anvik et al [2] met with some success
at automating this process by training a machine learner
that maps the contents of bug reports to the developer to fix
the bug. We use bug triaging as an example application to
demonstrate the value of duplicates by showing that predic-
tion accuracy can be increased by their inclusion in training
the machine learners.

5.1. Data Preparation

In Section 3, we stated that 16,511 master reports and
27,838 duplicate reports are considered for this study. For
our bug triaging experiments, we filtered the data to in-
clude only those master reports that were fixed by devel-
opers who previously fixed at least fifty bugs. This criterion
ensured the presence of sufficiently large number of bug re-
ports fixed by a developer in the training set. After filtering,
we had 8,623 master reports and 15,377 corresponding du-
plicates to work with.

Using the master and duplicate bug reports, we formed
two datasets: Master Data and Extended Data. The for-
mer dataset only included the master reports (8,623 reports),
while the latter included the master and their corresponding
duplicate reports (23,990 reports). Also, in the Extended
Data, we changed the assigned to field of the duplicate re-
ports to the developers who fixed the respective master re-
ports. The developers served as output or classes to be pre-
dicted by the machine learners.

The title and description fields of the bug reports were
used for experimentation. They served as the inputs to the
machine learners. Since both fields are entered as raw text
in the bug database, we converted them into a word vec-
tor using the StringToWordVector class in the Weka
toolkit [22]. Prior to the conversion to the word vector, we
removed all stop words from the reports, but did not per-
form stemming because previous research showed that it
had little benefit for bug triaging [8].

We applied a term frequency inverse document frequency
(TFxIDF) weighting scheme to the word vector. TFXIDF is
often used in text-based machine learning methods to pre-
vent biased results [15]. Word duplication in the bug reports
would create a bias towards certain developers. To counter
this problem, the weight vector is normalized using the Eu-
clidian norm. Second, the distribution of words is heavy-
tailed: a word is more likely to be encountered throughout
the document once it has first appeared. This is countered
by a logarithmic scaling of the weights for single words
(term frequency weighting). Words that appear in many bug
reports are considered to have less distinctive value. To pre-
vent those words from achieving large weights, the inverse
document frequency is used.



| Master reports, sorted chronologically |

Splitinto| Fold1 | Fold2 | Fold3 ]...........

Run 1 Testing
Run 2 Testing

Run 10 | Training

Figure 2. Experimental setup.

5.2. Experimental Setup

We conducted our experiments using a setup that preserves
the chronological order of when the bug reports were filed.
The setup is illustrated in Figure 2, which shows the bugs
in the Master Data ordered by their filing date and split into
folds. While this setup ensures that only past bugs are used
to predict the bugs reported in the future, this is only true for
the experiments using the Master Data. The arrangement is
not preserved for the Extended Data because the duplicates
are inserted into the folds in which the respective master
reports are present; and reports marked as duplicates may
have been reported before or after the master.

The experiments were conducted using ten runs (to re-
duce experimental bias [22]), which amounted to having
eleven folds. The folds were generated by first ordering the
8,623 master reports, and then distributing the reports into
eleven equally sized folds. As a result, each fold comprised
783 master reports totaling to 8,613 reports. The remaining
last 10 of the 8,623 master reports were discarded to ensure
equally sized folds.

Once the folds are ready, the experiments can be run it-
eratively using different folds as training and test sets. In
Figure 2 we see that Run [ is executed by treating the first
fold as a training set and the second, as the test set. In Run
2, the training set window is increased to include the first
and second folds, while the third fold is used as the test set.
This setup is repeated until Run 10, where the eleventh fold
is the test set and the first ten are used as the training set.

Experiments using the two datasets, Master Data and
Extended Data, were conducted separately. Note that for
each set of experiments, the folds from the respective
datasets were used to train the machine learners. But only
the master reports from the Master Data were used as test
sets. This allowed comparison of results from models that
were trained using different data to make predictions on the
same reports in the test folds.

We used two machine learners, namely support vector

machines (SVM) and Naive Bayes, to model the data. The
Weka toolkit [22] implementations of both learners were
used to conduct the experiments.

5.3. Results and Discussion

The results from the experiments are presented in Table 2.
We present results from all ten runs and both machine learn-
ers; accuracy is measured by considering the Top 1, Top
3, and Top 5 predictions made by the learners. To elabo-
rate, each learner makes predictions by ranking the output
classes or developers for the test bug reports. We considered
the top one (meaning exact match), three, and five highest
ranked developers and checked if the actual developer was
included in the lists. If so, we treated the prediction for
the tested bug report as correct. The reported numbers are
the percentage of bug reports in the test folds correctly pre-
dicted and the All column combines the predictions results
from all runs and reports the percentage of correct ones.
Predictions using Master Data or Extended Data are indi-
cated in the third column.

It is no surprise to see that the accuracy increased over
nearly all runs for both models. The machine learners had
more training data available in the higher numbered runs,
which increased their prediction accuracy. The Top 5 mea-
sure delivered highest accuracy for each run, also indicated
by the average accuracy. On the whole, SVM performed
better than Naive Bayes; the highest accuracy reached was
approximately 65%.

More relevant to our study is the comparison of accuracy
between using Master Data and Extended Data as training
data. In nearly all cases, the prediction accuracy increased
with the use of duplicate bug reports in the training data.
The differences between accuracy were as large as up to
9% (Top 5, Run 10 using SVM). We also conducted the Mc-
Nemar statistical test (p = .05) [20] to verify if the accuracy
using Extended Data data significantly increased. All runs
where the McNemar test results were significant are marked
in the table with a (*) alongside the percentage values. Most
pairs were significantly different using SVM, while the same
was true for fewer pairs using Naive Bayes. Importantly, all
but the Top 1 results using Naive Bayes in the last column
were significant too.

Thus, our results demonstrate that bug reports can be bet-
ter triaged by considering a larger set of existing bug re-
ports, inclusive of duplicates and support our second hy-
pothesis (H2) that the information in bug duplicates can
improve automated triaging techniques. Furthermore, our
results suggest that other similar empirical experiments can
benefit from the use of duplicates too, but this remains to be
verified.



Table 2. Percentages of bug reports correctly triaged to developers.

Run
Model Result Training 1 2 3 4 5 6 7 8 9 10 All

Ton 1 Master 15.45 19.28 19.03 19.80 25.80 26.44 22.09 27.08 27.71 29.12 23.18
op Extended 18.39*  20.95 22.22*  21.46 27.84 28.48 23.37 30.52*  30.78*  30.52 25.45*

SVM Ton 3 Master 32.44 37.42 40.87 39.72 46.10 46.36 38.95 44.70 48.53 47.25 42.23
P Extended 38.70* 42.78*  43.30 39.34 50.83*  49.55*  42.40* 50.32*  50.32 55.04*  46.25*

Ton 5 Master 41.89 46.87 47.38 47.64 54.66 56.96 47.51 52.36 56.58 56.45 50.83
op Extended 47.38*  52.11* 53.00* 51.85* 60.54* 59.90* 51.09* 58.11* 60.28% 65.26* 55.95*

Top 1 Master 14.81 16.60 17.75 17.75 22.73 21.20 20.56 23.50 27.71 28.22 21.08

op Extended  15.45 17.11 20.56*  18.01 19.80*  19.80 22.99 27.08*  26.82 30.40*  21.80

Baves  Top 3 Master 29.12 32.31 35.12 34.99 40.36 38.06 35.76 43.55 45.59 46.87 38.17
¥ P Extended 36.53*  33.08 38.83*  35.50 39.08 39.08 39.97*  46.23 45.85 50.45%  40.46*

Ton 5 Master 38.44 42.40 45.72 45.21 50.70 47.64 44.06 51.85 54.92 55.17 47.61
P Extended 45.72*  44.70 48.02 43.55 48.91 50.45%  49.43*  55.30*  54.28 58.49*  49.88*

* Increase in accuracy is significant at p = .05

Based on these three observations, we performed a more
detailed analysis on why duplicates are submitted in the first
places. Here are the reasons that we could identify.

6. Reasons for Bug Duplicates

While preparing the data for our experiments, we made the

following observations. . . .
e Lazy and inexperience users. Some users simply are

1. For master reports, duplicates are often submitted by not willing to spend time to search for duplicates. Oth-

the same users. As Table 3 shows, often a single user
submits are large number of bug reports that are dupli-
cates of each other. In the table, column “#bugs corre-
sponds to the number of bugs in a duplicate group and
“#users” corresponds to the number of unique users
who submitted these reports.

. Often duplicates are submitted at the same time (by the
same users). In column “time apart”, Table 4 lists the
time that the first and last bug report are apart in the
corresponding duplicate groups. The table is sorted in
ascending order by “time apart” and show that many
duplicates are reported at exactly the same time as the
original master report.

. Some bug reports are exact copies of each other, but
not always marked as duplicates. We grouped bug re-
ports with exactly the same title and description into
clusters. In Table 5, we list the largest clusters; the
size of each cluster is indicated by the column “#bugs”.
The column “#dups” shows how many reports have
been marked as duplicates. Within a cluster (i.e., same
title and description), one would expect that all bugs
except for one master report are marked as duplicates;
however, this is the case for only few clusters. When
bugs are not marked as duplicates (e.g., for the cluster
“4.0 Porting Guide”), they were reported for different
components to reach different development teams.

ers are not yet experienced enough with bug tracking.

Poor search feature. In previous work, we conducted a
survey on bug report quality, in which several users and
developers recommended improvements for the search
feature of BUGZILLA [3,4]. One example of bug where
the search feature likely failed is #24448 “Ant causing
Out of Memory”. It was reported by 33 different users
over a period of almost 900 days.

Multiple failures, one defect. Sometimes it is not obvi-
ous that two failures (error in the program execution)
belong to the same defect (error in the program code).
For example for bug #3361, a total of 39 duplicates
have been reported by the same user, likely a tester. In
the case of #3361, the reports have been created auto-
matically because it took the tester only one minute to
submit 40 bug reports.

Intentional resubmission. Some users intentionally re-
submit a bug, often out of frustration that it has not
been fixed so far. For example the duplicate #54603
was submitted more than eight months after the cre-
ation of the corresponding master bug #39064. The
duplicate started with "I raised this issue several times,
but it is still a problem.”

e Accidentally resubmission. A substantial number of

duplicate reports is created by users who accidentally



Table 3. Many duplicate reports are submitted

by the same users.

Master report #bugs #users

3361 JCK 1.4 -ICLS - field from outer [...]
111508 Extension Point and Schema Cleanup
102615 jaxb code assit
101189 Web Service Explorer does not work

66841 Font in preference dialogs is system font
75450 SWT-mozilla issue
127636 Fix gmf.tests junit failure due to [... ]
169346 [ErrorHandling] Changesin [...]
188031 SWT in 3.2.1 have a different [...]
134973 eclipse.ini is the most sensitive, [... ]

40

—
e}
e e e e e e e N

(o)W Ne NNe NNe NN o cle ]

Table 4. Many duplicate reports are submitted

approximately at the same time.

Master report #bugs time apart

185582 [Manifest][Editors] Disable code [...] 5
28538 EditorList close selected should [...] 4
96565 Atinstall, prompt user to [...] 4
97797 Includes not found 3
86540 NPE in CProjectSourceLocation 3

142575 [Test failure] Broken HTML links 3

245 more master reports

3361 JCK 1.4 -1ICLS - field from [...] 40

167895 Error with Expressions and [... ] 5
171387 Dialog layout fix 4
89465 Templates are not being generated 4

same time
same time
same time
same time
same time
same time

1 minute
1 minute
1 minute
1 minute

Table 5. Many bug reports are exactly the
same, but not always marked as duplicates.

Title #bugs #dups
4.0 Porting Guide 55 1
No version range specified when requiring |[... ] 14 0
test 13 0
jaxb code assit 13 7
Add keywords to preference pages 10 1
need to adopt ICU4J APIs 10 0
Web Service Explorer does not work 8 7
Convert plugins to use manifest.mf and single [...] 8 1
Using new registry API 8 0
Manifest files and plugin packaging 7 0
should adopt ICU Collator and use new APIs [...] 6 0
Fix gmf.tests junit failure due to domain [...] 6 5
SWT in 3.2.1 have a different behavior as [...] 6 5
eclipse.ini is the most sensitive, undocumented [...] 6 5
SWT-mozilla issue 6 5

clicked the submit button multiple times. For example,
bugs #28538 and #96565 each have four confirmed du-
plicates, which have been submitted by the same users
at exactly the same time. For ECLIPSE we found 521
confirmed duplicates that were likely caused by an ac-
cidental resubmission, i.e. duplicate reports which had
the same title, same description, same product, and
same component as a bug report, which was submit-
ted less than ten minutes before - by the same user.

Some of the above reasons for bug duplicates could be eas-
ily addressed by better tool support, e.g., by an improved
search and a warning when a user is submitting a bug again.

7. Threats to Validity
This section addresses the threats to validity of our study.

Threats to external validity. These threats concern our
ability to generalize from this work to general software de-
velopment practice.

e Results may not generalize to other projects. In this
study we examined a total of 44,349 bug reports from
the ECLIPSE project. Although these reports span a
total of 37 sub-projects of ECLIPSE, like ASPECTJ or
JDT, they may not be representative of other open-
or closed-source software projects. Different domains
and software processes may call for alternate handling
of duplicate reports.

e Additional information may also be harmful. Hypothe-
sis H1 researched in this study postulated the beneficial
value of additional information provided by duplicate
bug reports to the bug fixing process. However, ad-
ditional information may distract the developer from
defect location and repair.

Threats to internal validity. These threats concern the
appropriateness of our measurements, our methodology and
our ability to draw conclusions from them.

e Correctness of data. We assume that human triagers
always assign bug reports to the correct developer ca-
pable of resolving the problem and keeping that infor-
mation up-to date. If this data is incorrect, it could
potentially invalidate our results.

e Obsolete attachments. When quantifying the amount
of additional information provided by duplicate re-
ports, we do not take into account whether an attach-
ment has become obsolete or not. This information is
on one hand time dependent and on the other, subjec-
five.



o Implicit assumptions on the triaging process. Bug re-
ports, when filed are not initially assigned to a specific
developer. Instead new reports are first assigned to a
default email address. In most cases, this information
is not changed for reports that are resolved as being
duplicates. In our studies, we hence assumed that the
developer assigned to the master report should also be
responsible for the respective duplicate reports. This
need not generally to be true.

e Validation setup. Although many variants for exper-
imental setups exist such as random splits and cross-
validation, we chose a special setup that preserved the
chronological order of the bug reports. This setup pro-
vided a realistic simulation of bug tracking environ-
ments and consequently, more realistic assessment of
our experiments. We suspect that even better results
can be achieved by using other traditional experimen-
tal setups.

e Chronological order of duplicates. Due to the inverse
duplicate problem described in Section 3.2, the cre-
ation of the Extended Dataset violates the setup to
strictly predict the future using historical data. How-
ever, we expect this to have negligible impact, since
we use the Extended Dataset only for training.

e Biased results. Developers, who are assigned to a large
number of reports, will be substantially more likely to
be listed in the Top 5 list. We neutralize this by using a
TFxIDF transformation [15] to ensure those develop-
ers will not be favored by the machine learners.

8. Related Work

To our knowledge, no other work has empirically studied
the value of bug duplicates in software development. Our
results indicate that duplicates contain additional informa-
tion, which could help developers to fix bugs more effi-
ciently. We also found evidence that information from bug
duplicates can improve existing techniques to automatically
assign developers to bug reports [2,7, 8].

Other automated triaging techniques include the assign-
ment of locations to bug reports [6], detection of bug du-
plicates [10, 17, 19], and prediction of effort for bug re-
ports [21]. We are confident that all these approaches would
benefit by additionally taking information from duplicate
reports into account.

To some extent, our results substantiate the importance
of duplicate detection [1, 13], for which research used nat-
ural language processing [10, 17]. Duplicate detection is
mostly concerned with the discovery of duplicate reports,
however, it stops once a duplicate is detected. A common

practice in software development is to close duplicate re-
ports and discard the information that duplicates provided.
Our results indicate that a better handling of duplicates, e.g.,
merging them with master reports, would increase the infor-
mation readily available for developers.

9. Conclusions and Consequences

In this paper, we presented empirical evidence that bug du-
plicates contain information that is not present in master
reports. This additional data is potentially helpful for de-
velopers when fixing bugs and can also improve automated
triaging techniques such as deciding who should fix a bug.
We also discovered that many duplicates are submitted be-
cause of shortcomings of bug tracking systems.

Based on the findings in this paper, our recommenda-
tions for better bug tracking systems are as follows:

e Provide a feature to merge bug reports, so that all in-
formation is readily available to developers in one bug
report and not spread across many.

e Check for resubmission of identical bug reports. These
duplicates are easy to catch and could be easily
avoided by the bug tracking system.

o Allow users to renew long-living bug reports that are
still not fixed. Often the only way to remind developers
of these bugs is to resubmit them (and thus creating a
duplicate report). Providing an easy way to renew, i.e.,
show that a bug is still in the latest version, also shows
what bugs are important to users. In addition one could
assign bug reports with an expiry date, which is auto-
matically prolonged as long as there is activity for a
bug report or it is renewed by users.

e If someone finds a problem already reported in the
bug database, bug tracking systems should encourage
users to provide more information. Often bug writing
guidelines such as the one for ECLIPSE [9] stress the
importance of searching for duplicates, but do not so-
licit more information for filed bug reports.

e Improve search for bug reports. Most users are willing
to spend some time to search for duplicates, but not a
lot. Here approaches for duplicate detection will be a
valuable addition to bug tracking systems.

While we showed in this paper that bug duplicates con-
tain additional information, it is unfortunate that the data is
in separate reports. Merging duplicates into the master re-
port can help developers to find all relevant information in
one place. Ideally, users would search for a master report
and if they find one, add more information. However, in
practice the search feature of bug tracking systems is only



of limited use and does not help users to find master re-
ports [11], which is why building better search functional-
ity is the recommendation that we consider most important.
Further, users should be encouraged to add more informa-
tion to existing bug reports.

To learn more about our work on bug tracking systems
and mining software archives, visit

http://www.softevo.org/
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