
WhoseIsThat: Finding Software Engineers with Codebook

Andrew Begel

Microsoft Research
Redmond, WA, USA

andrew.begel@microsoft.com

Khoo Yit Phang

University of Maryland
College Park, MD, USA

khooyp@cs.umd.edu

Thomas Zimmermann

Microsoft Research
Redmond, WA, USA

tzimmer@microsoft.com

ABSTRACT

In this demo, we describe WhoseIsThat, a social search portal

which we built using the Codebook framework. We improve the

search experience in two ways: first, we search across multiple

software repositories at once with a single query; second, we re-

turn not just a list of artifacts in the results, but also engineers.

Categories and Subject Descriptors:

D.2.9 [Software Engineering]: Management—productivity; H.5.2

[Information Systems]: User Interfaces—User-centered design

General Terms: Management, Human Factors

Keywords: Knowledge management, Social networking, Mining

software repositories, Inter-team coordination.

1. INTRODUCTION
Coordination between software teams is a persistent problem in

software engineering. Teams are dependent on one another for

code, APIs, features, schedules, bugs and documentation, and

require frequent and effective communication and cooperation to

accomplish their tasks. Since engineers are connected by their

shared work, tools that discover connections in their work-related

repositories can help to address many of the engineers’ coordina-

tion needs. In this demo, we discuss the Codebook framework and

the WhoseIsThat, which both support coordination needs.

(For a discussion of related work, we refer to our previous publi-

cation on the Codebook framework [1].)

2. CODEBOOK
Codebook is a repository mining and analysis platform [1,2,3]

inspired by the field of social networking. As in popular social

networking applications like Facebook and MySpace, individuals

in Codebook are connected to one another in a network graph.

In Codebook's graph of relationships, nodes are generalized to be

not just people, but also bugs, code, tests, builds, specifications,

and other work artifacts related to the software development pro-

cess. The edges between Codebook nodes describe relationships

and activities that have occurred. For example, ―Todd committed

checkin 34‖ or ―Mary closed bug 2333.‖ Currently there are 11

node types and 18 edge types, for a total of 28 unique node-edge-

node triple types (for example, WorkItem IsLinkedTo WorkItem,

Person IsManagerOf Person, and Checkin Contains RevisedFile).

Transitively connected pathways in the Codebook graph reveal

distantly connected, yet related, nodes. For example, one node

might indicate that a tester named Mary closed Bug 2333, which

included a stack trace that names a function Foo, which was modi-

fied in Checkin 34, which was committed by a developer named

Todd. Therefore, Mary’s action to close the bug is connected to

Todd’s checkin. In Codebook such relationships are described via

graph paths defined by regular expressions.

Figure 1 shows the architecture of the Codebook framework. It

consists of several repository crawlers which create the graph, a

set of analyses to discover interesting relationships between nodes

in the graph, and an API for applications to access the discovered

relationships. More specifically, the Codebook process consists of

seven steps:

1. Crawl software repositories and other related repositories
such as Active Directory, Sharepoint, and mailing lists.

2. Create a graph of people and artifacts (code, workitems, etc.)

3. Add direct relationships from structure or metadata.

4. Detect additional direct relationships from textual allusions.

5. Add transitive relationships via regular expression paths
written by domain experts.

6. Build a search index.

7. Query Codebook data using web services.

New applications can access the Codebook database through web

services. In this demo, we show how we used Codebook to build a

social search application called WhoseIsThat.

Copyright is held by the author/owner(s).
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.

ACM 978-1-60558-791-2/10/11

Figure 1. The architecture of the Codebook framework.

3. WHOSE IS THAT
We conducted a survey at Microsoft to learn about coordination

problems between software development teams [1]. We asked

engineers—which included software developers, testers, and pro-

gram managers—to prioritize 31 different information needs

around inter-team coordination. Four of the top ten information

needs concerned finding the people who own and are responsible

for a feature, API, product or service:

1. Given a feature, API, product or service, finding out who the

most relevant engineers (developers, testers, program man-

agers, leads, etc.) are in order to contact them.

2. Finding out who owns some code or has ever worked on it in

the past.

3. Finding out who owns a specification or knows the most

about it.

4. Finding out which teams own the feature, product or service

I or my team depend on.

Finding the right person to answer the above questions typically

involves searching through various intranet portals and software

repositories and is a time-consuming task. Furthermore, engineers

have to delve into each search result to locate a related person for

an artifact.

To help engineers find people, we built a web-based social search

portal called WhoseIsThat [1] based on the Codebook framework.

We improve the search experience in two ways: first, we search

across multiple repositories (such as TFS and Sharepoint) at once

with a single query; second, we return not just a list of artifacts in

the results, but also people that can answer questions.

Figure 2 shows an example use of WhoseIsThat. Given some

search terms, WhoseIsThat returns a set of related people, work

items, code and files from the repositories. In the search results,

we augment each artifact result with a list of owners, so an engi-

neer can quickly find a person who can answer questions about

that artifact (artifact ownership). We augment each person result

with a list of associates, as this may help an engineer determine

the team that person belongs to, or perhaps may help discover

another person he might know personally (associates).

Codebook’s design was ideal for building the WhoseIsThat tool.

First, Codebook crawls multiple repositories and can perform

searches across all of them simultaneously. Second, Codebook

can return the people, not just their artifacts, by using regular

language paths to describe relationships from artifacts to people.

We annotated Figure 2 with some of Codebook’s regular expres-

sions used by WhoseIsThat. For example to find the owners of a

file, Codebook first finds its revisions, from which it gets change

sets, which then point to the people who made changes to the file.

Codebook comes with a set of regular expression (ownership,

associates) which can be customized and extended by domain

experts; applications can also additional regular expressions.

At the same time, the design of WhoseIsThat remains flexible. For

example, it is possible for WhoseIsThat to include additional rela-

tions because Codebook’s graphs are typed.

For more information on WhoseIsThat and Codebook, logon to

http://research.microsoft.com/en-us/projects/codebook/

Acknowledgements. We thank the FSE reviewers for valuable feedback.

4. REFERENCES
[1] A. Begel, K. Y. Phang, and T. Zimmermann: Codebook: Discover-

ing and Exploiting Relationships in Software Repositories. In Pro-

ceedings of ICSE’2010 – Volume 1, pp.125-134.

[2] A. Begel and R. DeLine. Codebook: Social networking over code. In

Companion of ICSE’2009, pp. 263-266.

[3] A. Begel and T. Zimmermann: Keeping up with your Friends: Func-

tion Foo, Library Bar.DLL, and Work Item 24. In Proceedings of

Web2SE’2010.

Figure 2. Screenshot of WhoseIsThat search results. Each column shows a different type of result, from left to right: people, work

items, and files. Small photos next to each result show the associates for people or owners for artifacts. The screenshot is annotated

with the regular expressions used to find associates and artifact owners.

